6,530 research outputs found

    Effect of Morphological Changes due to Increasing Carbon Nanoparticles Content on the Quasi-Static Mechanical Response of Epoxy Resin

    Get PDF
    Mechanical failure in epoxy polymer and composites leads them to commonly be referred to as inherently brittle due to the presence of polymerization-induced microcrack and microvoids, which are barriers to high-performance applications, e.g., in aerospace structures. Numerous studies have been carried out on epoxy's strengthening and toughening via nanomaterial reinforcement, e.g., using rubber nanoparticles in the epoxy matrix of new composite aircraft. However, extremely cautious process and functionalization steps must be taken in order to achieve high-quality dispersion and bonding, the development of which is not keeping pace with large structures applications. In this article, we report our studies on the mechanical performance of an epoxy polymer reinforced with graphite carbon nanoparticles (CNPs), and the possible effects arising from a straightforward, rapid stir-mixing technique. The CNPs were embedded in a low viscosity epoxy resin, with the CNP weight percentage (wt %) being varied between 1% and 5%. Simplified stirring embedment was selected in the interests of industrial process facilitation, and functionalization was avoided to reduce the number of parameters involved in the study. Embedment conditions and timing were held constant for all wt %. The CNP filled epoxy resin was then injected into an aluminum mold and cured under vacuum conditions at 80 °C for 12 h. A series of test specimens were then extracted from the mold, and tested under uniaxial quasi-static tension, compression, and nanoindentation. Elementary mechanical properties including failure strain, hardness, strength, and modulus were measured. The mechanical performance was improved by the incorporation of 1 and 2 wt % of CNP but was degraded by 5 wt % CNP, mainly attributed to the morphological change, including re-agglomeration, with the increasing CNP wt %. This change strongly correlated with the mechanical response in the presence of CNP, and was the major governing mechanism leading to both mechanical improvement and degradation

    Iron Technology and Social Change in Early India (350 B.C. - 200 B.C)

    Get PDF
    The paper encompasses the social changes that have been encountered with the development of iron technology during:350 BC to 200 BC. A greater exploitation of iron mines fulfilled the growing demands for the metals on one side and subsequent technological advancement on the other side. All these have social implication too. Archa-elogical evidences also support them

    Growth, Characterization, Vortex Pinning and Vortex Flow Properties of Single Crystals of Iron Chalcogenide Superconductor FeCr0.02_{0.02}Se

    Full text link
    We report the growth and characterization of single crystals of iron chalcogenide superconductor FeCr0.02_{0.02}Se. There is an enhancement of the superconducting transition temperature (Tc_{\rm c}) as compared to the Tc_{\rm c} of the single crystals of the parent compound Fe1+x_{1+x}Se by about 25%. The superconducting parameters such as the critical fields, coherence length, penetration depth and the Ginzburg-Landau parameter have been estimated for these single crystals. Analysis of the critical current data suggests a fluctuation in electronic mean free path induced (δl\delta l) pinning mechanism in this material. Thermally activated transport across the superconducting transition in the presence of external magnetic fields suggests a crossover from a single vortex pinning regime at low fields to a collective flux creep regime at higher magnetic fields. The nature of charge carriers in the normal state estimated from the Hall effect and thermal transport measurements could provide crucial information on the mechanism of superconductivity in Fe-based materials.Comment: 2 additional figures, additional discussion on nature of charge carrier

    Immunomodulatory Activity of Chlorophytum borivilianum Sant. F

    Get PDF
    Chlorophytum borivilianum Santapau & Fernandes (Liliaceae) is a very popular herb in traditional Indian medicine and constitute a group of herbs used as ‘Rasayan’ or adaptogen. Ethanolic extract of the roots and its sapogenin were evaluated for their immunomodulatory activity. Effect of azathioprine-induced myelosuppresion and administration of extracts on hematological and serological parameters was determined. Administration of extracts greatly improved survival against Candida albicans infection. An increase in delayed-type hypersensitivity response (DTH), % neutrophil adhesion and in vivo phagocytosis by carbon clearance method was observed after treatment with extracts. Immunostimulant activity of ethanolic extract was more pronounced as compared to sapogenins. The results, thus justifies the traditional use of C. borivilianum as a rasayana drug

    Report of dorsal fin abnormality in silver pomfret

    Get PDF
    During a routine sampling for silver pomfret Pampus argenteus, specimens with dorsal fin abnormality were collected from Ratnagiri and Mumbai, Maharashtra. On 29th April, 2016 a single silver pomfret with deformed dorsal region and a deep pit in the dorsal region was observed in the purse seine landings at Mirkarwada fish landing centre, Ratnagir
    corecore