1,142 research outputs found
Abnormal structural connectivity in the brain networks of children with hydrocephalus
Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect abnormalities of brain network connectivity associated with hydrocephalus at both global and regional levels, thus providing a new avenue for potential diagnosis and prognosis tool for children with hydrocephalus
Investigating the TeV Morphology of MGRO J1908+06 with VERITAS
We report on deep observations of the extended TeV gamma-ray source MGRO
J1908+06 made with the VERITAS very high energy (VHE) gamma-ray observatory.
Previously, the TeV emission has been attributed to the pulsar wind nebula
(PWN) of the Fermi-LAT pulsar PSR J1907+0602. We detect MGRO J1908+06 at a
significance level of 14 standard deviations (14 sigma) and measure a photon
index of 2.20 +/- 0.10_stat +/- 0.20_sys. The TeV emission is extended,
covering the region near PSR J1907+0602 and also extending towards SNR
G40.5--0.5. When fitted with a 2-dimensional Gaussian, the intrinsic extension
has a standard deviation of sigma_src = 0.44 +/- 0.02 degrees. In contrast to
other TeV PWNe of similar age in which the TeV spectrum softens with distance
from the pulsar, the TeV spectrum measured near the pulsar location is
consistent with that measured at a position near the rim of G40.5--0.5, 0.33
degrees away.Comment: To appear in ApJ, 8 page
ANTIBACTERIAL ACTIVITY OF SOME FOLKLORE MEDICINAL PLANTS FROM SOUTH INDIA
Antibacterial activity and phytochemical tests of eight whole plant methanol extracts belonging to family Euphorbiaceae were evaluated. In agar well diffusion assay the diameter of inhibition zones ranged from 3-13 mm. Phyllanthus emblica showed maximum activity of 13 mm. The MIC and MBC observed were 30-140 mcg/ml and 40-160 mcg/ml, respectively. P. piscatorum and P. emblica showed the lowest MIC (30 mcg/ml), P. emblica the lowest MBC (40 mcg/ml) and thus an effective inhibitor of the tested bacteria. Alkaloids, saponins and tannins were detected in 7 out of 8 tested plants
VERITAS Observations of the gamma-Ray Binary LS I +61 303
LS I +61 303 is one of only a few high-mass X-ray binaries currently detected
at high significance in very high energy gamma-rays. The system was observed
over several orbital cycles (between September 2006 and February 2007) with the
VERITAS array of imaging air-Cherenkov telescopes. A signal of gamma-rays with
energies above 300 GeV is found with a statistical significance of 8.4 standard
deviations. The detected flux is measured to be strongly variable; the maximum
flux is found during most orbital cycles at apastron. The energy spectrum for
the period of maximum emission can be characterized by a power law with a
photon index of Gamma=2.40+-0.16_stat+-0.2_sys and a flux above 300 GeV
corresponding to 15-20% of the flux from the Crab Nebula.Comment: accepted for publication in The Astrophysical Journa
Evidence for proton acceleration up to TeV energies based on VERITAS and Fermi-LAT observations of the Cas A SNR
We present a study of -ray emission from the core-collapse supernova
remnant Cas~A in the energy range from 0.1GeV to 10TeV. We used 65 hours of
VERITAS data to cover 200 GeV - 10 TeV, and 10.8 years of \textit{Fermi}-LAT
data to cover 0.1-500 GeV. The spectral analysis of \textit{Fermi}-LAT data
shows a significant spectral curvature around GeV that is
consistent with the expected spectrum from pion decay. Above this energy, the
joint spectrum from \textit{Fermi}-LAT and VERITAS deviates significantly from
a simple power-law, and is best described by a power-law with spectral index of
with a cut-off energy of TeV. These
results, along with radio, X-ray and -ray data, are interpreted in the
context of leptonic and hadronic models. Assuming a one-zone model, we exclude
a purely leptonic scenario and conclude that proton acceleration up to at least
6 TeV is required to explain the observed -ray spectrum. From modeling
of the entire multi-wavelength spectrum, a minimum magnetic field inside the
remnant of is deduced.Comment: 33 pages, 9 Figures, 6 Table
Discovery of Very High Energy Gamma Rays from 1ES 1440+122
The BL Lacertae object 1ES 1440+122 was observed in the energy range from 85
GeV to 30 TeV by the VERITAS array of imaging atmospheric Cherenkov telescopes.
The observations, taken between 2008 May and 2010 June and totalling 53 hours,
resulted in the discovery of -ray emission from the blazar, which has a
redshift =0.163. 1ES 1440+122 is detected at a statistical significance of
5.5 standard deviations above the background with an integral flux of
(2.8) 10
cm s (1.2\% of the Crab Nebula's flux) above 200 GeV. The
measured spectrum is described well by a power law from 0.2 TeV to 1.3 TeV with
a photon index of 3.1 0.4 0.2.
Quasi-simultaneous multi-wavelength data from the Fermi Large Area Telescope
(0.3--300 GeV) and the Swift X-ray Telescope (0.2--10 keV) are additionally
used to model the properties of the emission region. A synchrotron self-Compton
model produces a good representation of the multi-wavelength data. Adding an
external-Compton or a hadronic component also adequately describes the data.Comment: 8 pages, 4 figures. Accepted for publication in MNRA
A Multi-wavelength View of the TeV Blazar Markarian 421: Correlated Variability, Flaring, and Spectral Evolution
We report results from a multi-wavelength monitoring campaign on Mrk 421 over
the period of 2003-2004. The source was observed simultaneously at TeV and
X-ray energies, with supporting observations frequently carried out at optical
and radio wavelengths. The large amount of simultaneous data has allowed us to
examine the variability of Mrk 421 in detail. The variabilities are generally
correlated between the X-ray and gamma-ray bands, although the correlation
appears to be fairly loose. The light curves show the presence of flares with
varying amplitudes on a wide range of timescales both at X-ray and TeV
energies. Of particular interest is the presence of TeV flares that have no
coincident counterparts at longer wavelengths, because the phenomenon seems
difficult to understand in the context of the proposed emission models for TeV
blazars. We have also found that the TeV flux reached its peak days before the
X-ray flux during a giant flare in 2004. Such a difference in the development
of the flare presents a further challenge to the emission models. Mrk 421
varied much less at optical and radio wavelengths. Surprisingly, the normalized
variability amplitude in optical seems to be comparable to that in radio,
perhaps suggesting the presence of different populations of emitting electrons
in the jet. The spectral energy distribution (SED) of Mrk 421 is seen to vary
with flux, with the two characteristic peaks moving toward higher energies at
higher fluxes. We have failed to fit the measured SEDs with a one-zone SSC
model; introducing additional zones greatly improves the fits. We have derived
constraints on the physical properties of the X-ray/gamma-ray flaring regions
from the observed variability (and SED) of the source. The implications of the
results are discussed. (Abridged)Comment: 32 pages, 12 figures, to appear in Ap
A Search for Very High-Energy Gamma Rays from the Missing Link Binary Pulsar J1023+0038 with VERITAS
The binary millisecond radio pulsar PSR J1023+0038 exhibits many
characteristics similar to the gamma-ray binary system PSR B1259--63/LS 2883,
making it an ideal candidate for the study of high-energy non-thermal emission.
It has been the subject of multi-wavelength campaigns following the
disappearance of the pulsed radio emission in 2013 June, which revealed the
appearance of an accretion disk around the neutron star. We present the results
of very high-energy gamma-ray observations carried out by VERITAS before and
after this change of state. Searches for steady and pulsed emission of both
data sets yield no significant gamma-ray signal above 100 GeV, and upper limits
are given for both a steady and pulsed gamma-ray flux. These upper limits are
used to constrain the magnetic field strength in the shock region of the PSR
J1023+0038 system. Assuming that very high-energy gamma rays are produced via
an inverse-Compton mechanism in the shock region, we constrain the shock
magnetic field to be greater than 2 G before the disappearance of the
radio pulsar and greater than 10 G afterwards.Comment: 7 pages, 3 figures, accepted for publication in Ap
Gamma-ray observations of Tycho's SNR with VERITAS and Fermi
High-energy gamma-ray emission from supernova remnants (SNRs) has provided a
unique perspective for studies of Galactic cosmic-ray acceleration. Tycho's SNR
is a particularly good target because it is a young, type Ia SNR that is
well-studied over a wide range of energies and located in a relatively clean
environment. Since the detection of gamma-ray emission from Tycho's SNR by
VERITAS and Fermi-LAT, there have been several theoretical models proposed to
explain its broadband emission and high-energy morphology. We report on an
update to the gamma-ray measurements of Tycho's SNR with 147 hours of VERITAS
and 84 months of Fermi-LAT observations, which represents about a factor of two
increase in exposure over previously published data. About half of the VERITAS
data benefited from a camera upgrade, which has made it possible to extend the
TeV measurements toward lower energies. The TeV spectral index measured by
VERITAS is consistent with previous results, but the expanded energy range
softens a straight power-law fit. At energies higher than 400 GeV, the
power-law index is . It
is also softer than the spectral index in the GeV energy range, , measured by this study using
Fermi--LAT data. The centroid position of the gamma-ray emission is coincident
with the center of the remnant, as well as with the centroid measurement of
Fermi--LAT above 1 GeV. The results are consistent with an SNR shell origin of
the emission, as many models assume. The updated spectrum points to a lower
maximum particle energy than has been suggested previously.Comment: Accepted for publication in The Astrophysical Journa
- âŠ