99 research outputs found
Influence of microscopic many-body scattering on multi-wavelength VECSEL lasing
Non-equilibrium multi-wavelength operation of vertical external-cavity surface-emitting lasers (VECSELs) is investigated numerically using a coupled system of Maxwell semiconductor Bloch equations. The propagation of the electromagnetic field is modeled using Maxwell's equations, and the semiconductor Bloch equations simulate the optically active quantum wells. Microscopic many-body carrier-carrier and carrier-phonon scattering are treated at the level of second Born-Markov approximation, polarization dephasing with a characteristic rate, and carrier screening with the static Lindhard formula. At first, an initialization scheme is constructed to study multi-wavelength operation in a time-resolved VECSEL. Intracavity dual-wavelength THz stabilization is examined using longitudinal modes and an intracavity etalon. In the latter, anti-correlated noise is observed for THz generation and investigated.Air Force Office of Scientific Research [FA9550-17-1-0246]This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
Why witnesses of bullying tell: Individual and interpersonal factors
The reactions of those who witness bullying are important because they can stop the bullying and prevent further harm. Factors associated with telling behavior were investigated with 477 elementary school students who witnessed bullying. Approximately seventy percent of the students talked to someone about bullying incidents, most often, teachers. Chi-square and logistic regression analyses demonstrated that gender, frequency of witnessing, cognitive empathy, and social skills were found to be associated with telling behavior of witnesses, whereas affective empathy and school connectedness were not significantly related. Findings from this research are important for future practice and studies on bystander intervention
Knowledge co-production in the Helge å catchment: a comparative analysis
Addressing sustainability challenges in landscape management requires processes for co-producing usable knowledge together with those who will use that knowledge. Participatory futures methods are powerful tools for attaining such knowledge. The applications of such methods are diverse and understanding the intricacies of the knowledge co-production process is important to further develop these research practices. To improve participatory futures methods and contribute to systematic and critical reflections on methodology, we present a comparative analysis of four research projects that applied participatory futures methods in the same study area. Conducted between 2011 and 2020, these projects aimed to co-produce knowledge about the future provision of ecosystem services in the Helge å catchment area in southern Sweden. For structuring the post-hoc, self-reflexive analysis, we developed a framework dividing the knowledge co-production process into three dimensions: settings, synthesis and diffusion. We based the analysis on documentation from the projects, a two-step questionnaire to each research team, a workshop with co-authors and interviews with key participants. The comparison highlights steps in project decision-making, explicit and implicit assumptions in our respective approaches and how these assumptions informed process design in the projects. Our detailed description of the four knowledge co-production processes points to the importance of flexibility in research design, but also the necessity for researchers and other participants to adapt as the process unfolds
Establishment of feijoa (Acca sellowiana) callus and cell suspension cultures and identification of arctigenin - a high value bioactive compound
Feijoa (Acca sellowiana (O. Berg.) Burret), also known as pineapple guava, is a member of the Myrtaceae family and is well known for its fruit. Chemical profiling of the different tissues of the feijoa plant has shown that they generate an array of useful bioactive compounds which have health benefits such as significant antioxidant activities. In this study, an in vitro culture system has been developed, which could be explored to extract high-value bioactive compounds from feijoa. Feijoa tissue culture was initiated by the induction of callus from floral buds. Sections of floral buds were plated on MS medium supplemented with 2,4-D and BAP at 2.0mg/L and 0.2mg/L concentrations, respectively. Cell suspension cultures of feijoa were established using a liquid MS medium with different concentrations of 2,4-D and BAP and cultured on a rotary shaker. The growth of the cell suspension was evaluated with different parameters such as different carbohydrate sources, concentration of MS media, and inoculum density. When the cell suspensions were treated with different concentrations of MeJA at different time points, phytochemicals UPLC - QTOF MS analysis identified extractables of interest. The main compounds identified were secondary metabolites (flavonoids and flavonoid-glucosides) and plant hormones. These compounds are of interest for their potential use in therapeutics or skin and personal care products. This report investigates essential methodology parameters for establishing cell suspension cultures from feijoa floral buds, which could be used to generate in vitro biomass to produce high-value bioactive compounds. This is the first study reporting the identification of arctigenin from feijoa, a high-value compound whose pharmaceutical properties, including anti-tumour, anti-inflammatory and anti-colitis effects, have been widely reported. The ability of feijoa cell cultures to produce such high-value bioactive compounds is extremely promising for its use in pharmaceuticals, cosmeceuticals and nutraceuticals applications
Novel Inhibitory Function of the Rhizomucor miehei Lipase Propeptide and Three-Dimensional Structures of Its Complexes with the Enzyme
Many proteins are synthesized as precursors, with propeptides playing a variety of roles such as assisting in folding or preventing them from being active within the cell. While the precise role of the propeptide in fungal lipases is not completely understood, it was previously reported that mutations in the propeptide region of the Rhizomucor miehei lipase have an influence on the activity of the mature enzyme, stressing the importance of the amino acid composition of this region. We here report two structures of this enzyme in complex with its propeptide, which suggests that the latter plays a role in the correct maturation of the enzyme. Most importantly, we demonstrate that the propeptide shows inhibition of lipase activity in standard lipase assays and propose that an important role of the propeptide is to ensure that the enzyme is not active during its expression pathway in the original host
De-Novo Assembly and Analysis of the Heterozygous Triploid Genome of the Wine Spoilage Yeast Dekkera bruxellensis AWRI1499
Despite its industrial importance, the yeast species Dekkera (Brettanomyces) bruxellensis has remained poorly understood at the genetic level. In this study we describe whole genome sequencing and analysis for a prevalent wine spoilage strain, AWRI1499. The 12.7 Mb assembly, consisting of 324 contigs in 99 scaffolds (super-contigs) at 26-fold coverage, exhibits a relatively high density of single nucleotide polymorphisms (SNPs). Haplotype sampling for 1.2% of open reading frames suggested that the D. bruxellensis AWRI1499 genome is comprised of a moderately heterozygous diploid genome, in combination with a divergent haploid genome. Gene content analysis revealed enrichment in membrane proteins, particularly transporters, along with oxidoreductase enzymes. Availability of this assembly and annotation provides a resource for further investigation of genomic organization in this species, and functional characterization of genes that may confer important phenotypic traits
Parallel laboratory evolution and rational debugging reveal genomic plasticity to S. cerevisiae synthetic chromosome XIV defects
Synthetic chromosome engineering is a complex process due to the need to identify and repair growth defects and deal with combinatorial gene essentiality when rearranging chromosomes. To alleviate these issues, we have demonstrated novel approaches for repairing and rearranging synthetic Saccharomyces cerevisiae genomes. We have designed, constructed, and restored wild-type fitness to a synthetic 753,096-bp version of S. cerevisiae chromosome XIV as part of the Synthetic Yeast Genome project. In parallel to the use of rational engineering approaches to restore wild-type fitness, we used adaptive laboratory evolution to generate a general growth-defect-suppressor rearrangement in the form of increased TAR1 copy number. We also extended the utility of the synthetic chromosome recombination and modification by loxPsym-mediated evolution (SCRaMbLE) system by engineering synthetic-wild-type tetraploid hybrid strains that buffer against essential gene loss, highlighting the plasticity of the S. cerevisiae genome in the presence of rational and non-rational modifications. </p
The Lick AGN Monitoring Project 2016 : dynamical modeling of velocity-resolved Hβ lags in luminous Seyfert galaxies
K.H. acknowledges support from STFC grant ST/R000824/1.We have modeled the velocity-resolved reverberation response of the Hβ broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic Nucleus (AGN) Monitoring Project 2016 sample, drawing inferences on the geometry and structure of the low-ionization broad-line region (BLR) and the mass of the central supermassive black hole. Overall, we find that the Hβ BLR is generally a thick disk viewed at low to moderate inclination angles. We combine our sample with prior studies and investigate line-profile shape dependence, such as log10(FWHM/σ), on BLR structure and kinematics and search for any BLR luminosity-dependent trends. We find marginal evidence for an anticorrelation between the profile shape of the broad Hβ emission line and the Eddington ratio, when using the rms spectrum. However, we do not find any luminosity-dependent trends, and conclude that AGNs have diverse BLR structure and kinematics, consistent with the hypothesis of transient AGN/BLR conditions rather than systematic trends.Publisher PDFPeer reviewe
The Lick AGN Monitoring Project 2016: Dynamical Modeling of Velocity-Resolved H\b{eta} Lags in Luminous Seyfert Galaxies
We have modeled the velocity-resolved reverberation response of the H\b{eta}
broad emission line in nine Seyfert 1 galaxies from the Lick Active Galactic
Nucleus (AGN) Monitioring Project 2016 sample, drawing inferences on the
geometry and structure of the low-ionization broad-line region (BLR) and the
mass of the central supermassive black hole. Overall, we find that the H\b{eta}
BLR is generally a thick disk viewed at low to moderate inclination angles. We
combine our sample with prior studies and investigate line-profile shape
dependence, such as log10(FWHM/{\sigma}), on BLR structure and kinematics and
search for any BLR luminosity-dependent trends. We find marginal evidence for
an anticorrelation between the profile shape of the broad H\b{eta} emission
line and the Eddington ratio, when using the root-mean-square spectrum.
However, we do not find any luminosity-dependent trends, and conclude that AGNs
have diverse BLR structure and kinematics, consistent with the hypothesis of
transient AGN/BLR conditions rather than systematic trends
The Lick AGN Monitoring Project 2016 : velocity-resolved Hβ lags in luminous Seyfert galaxies
Funding: K.H. acknowledges support from STFC grant ST/R000824/1.We carried out spectroscopic monitoring of 21 low-redshift Seyfert 1 galaxies using the Kast double spectrograph on the 3 m Shane telescope at Lick Observatory from April 2016 to May 2017. Targetingactive galactic nuclei (AGN) with luminosities of λLλ(5100 Å) ≈ 1044 erg s−1 and predicted Hβ lags of∼ 20–30 days or black hole masses of 107–108.5 M⊙, our campaign probes luminosity-dependent trends in broad-line region (BLR) structure and dynamics as well as to improve calibrations for single-epoch estimates of quasar black hole masses. Here we present the first results from the campaign, including Hβ emission-line light curves, integrated Hβ lag times (8–30 days) measured against V -band continuum light curves, velocity-resolved reverberation lags, line widths of the broad Hβ components, and virial black hole mass estimates (107.1–108.1 M⊙). Our results add significantly to the number of existing velocity-resolved lag measurements and reveal a diversity of BLR gas kinematics at moderately high AGN luminosities. AGN continuum luminosity appears not to be correlated with the type of kinematics that its BLR gas may exhibit. Follow-up direct modeling of this dataset will elucidate the detailed kinematics and provide robust dynamical black hole masses for several objects in this sample.Publisher PDFPeer reviewe
- …