116 research outputs found

    A Coupled Dynamical and Chemical Model of Starless Cores of Magnetized Molecular Clouds: I. Formulation and Initial Results

    Get PDF
    We develop a detailed chemical model for the starless cores of strongly magnetized molecular clouds, with the ambipolar diffusion-driven dynamic evolution of the clouds coupled to the chemistry through ion abundances. We concentrate on two representative model clouds in this initial study, one with magnetic fields and the other without. The model predictions on the peak values and spatial distributions of the column densities of CO, CCS, N2_2H+^+ and HCO+^+ are compared with those observationally inferred for the well-studied starless core L1544, which is thought to be on the verge of star formation. We find that the magnetic model, in which the cloud is magnetically supported for several million years before collapsing dynamically, provides a reasonable overall fit to the available data on L1544; the fit is significantly worse for the non-magnetic model, in which the cloud collapses promptly. The observed large peak column density for N2_2H+^+ and clear central depression for CCS favor the magnetically-retarded collapse over the free-fall collapse. A relatively high abundance of CCS is found in the magnetic model, resulting most likely from an interplay of depletion and late-time hydrocarbon chemistry enhanced by CO depletion. These initial results lend some support to the standard picture of dense core formation in strongly magnetized clouds through ambipolar diffusion. They are at variance with those of Aikawa et al. (2001) who considered a set of models somewhat different from ours and preferred one in which the cloud collapses more or less freely for L1544.Comment: 25 pages, 7 figures, accepted to Ap

    Energetic oxygen atoms in the polar geocorona

    Full text link
    peer reviewedThe role of the auroral sources induced by the electron and proton precipitation in the formation of the hot oxygen corona in the polar upper atmosphere is studied. It is found that both electron precipitation through exothermic chemistry and proton precipitation through atmospheric sputtering significantly contribute to the population of the hot oxygen geocorona. It is also found that only atmospheric sputtering results in the formation of the escape flux of energetic oxygen atoms, providing an important source of heavy atoms for the magnetosphere. The exothermic chemistry induced by the electron precipitation and/or by the absorption of the solar UV radiation is operating continuously in the polar upper atmosphere and results in a steady population of the very near-Earth environment by suprathermal oxygen atoms with energies below a few eV. By contrast, atmospheric sputtering by magnetospheric protons provides a more variable contribution, strongly coupled with the cusp region. It produces the more energetic oxygen atoms that populate the external regions of the hot oxygen geocorona. The results of calculations are in a good agreement with the analysis of the low-latitude perigee Low Energy Neutral Atom (LENA) images showing that the instrument signal consists of low to medium energy (5-30 eV) oxygen atoms produced in and near the cusp region. The more energetic (>30 eV) fraction of energetic oxygen atoms produced by the ion-induced atmospheric sputtering could be responsible for the energetic neutrals observed by the instrument far away from the cusp or oval regions. The total escape flux of oxygen atoms associated with atmospheric sputtering by protons is found about 8 × 10[SUP]23[/SUP] s[SUP]-1[/SUP] therefore this mechanism may provide a substantial contribution to the magnetospheric oxygen population

    Dust Emission from Herbig Ae/Be stars - Evidence for Disks and Envelopes

    Get PDF
    IR and mm-wave emission from Herbig Ae/Be stars has produced conflicting conclusions regarding the dust geometry in these objects. We show that the compact dimensions of the mm-wave emitting regions are a decisive indication for disks. But a disk cannot explain the spectral energy distribution (SED) unless it is embedded in an extended envelope that (1) dominates the IR emission and (2) provides additional disk heating on top of the direct stellar radiation. Detailed radiative transfer calculations based on the simplest model for envelope-embedded disks successfully fit the data from UV to mm wavelengths and show that the disks have central holes. This model also resolves naturally some puzzling results of IR imaging.Comment: 9 pages, 2 figures. accepted to ApJ

    On the master equation approach to diffusive grain-surface chemistry: the H, O, CO system

    Full text link
    We have used the master equation approach to study a moderately complex network of diffusive reactions occurring on the surfaces of interstellar dust particles. This network is meant to apply to dense clouds in which a large portion of the gas-phase carbon has already been converted to carbon monoxide. Hydrogen atoms, oxygen atoms, and CO molecules are allowed to accrete onto dust particles and their chemistry is followed. The stable molecules produced are oxygen, hydrogen, water, carbon dioxide (CO2), formaldehyde (H2CO), and methanol (CH3OH). The surface abundances calculated via the master equation approach are in good agreement with those obtained via a Monte Carlo method but can differ considerably from those obtained with standard rate equations.Comment: 13 pages, 5 figure

    An inversion method for cometary atmospheres

    Full text link
    Remote observation of cometary atmospheres produces a measurement of the cometary emissions integrated along the line of sight. This integration is the so-called Abel transform of the local emission rate. The observation is generally interpreted under the hypothesis of spherical symmetry of the coma. Under that hypothesis, the Abel transform can be inverted. We derive a numerical inversion method adapted to cometary atmospheres using both analytical results and least squares fitting techniques. This method, derived under the usual hypothesis of spherical symmetry, allows us to retrieve the radial distribution of the emission rate of any unabsorbed emission, which is the fundamental, physically meaningful quantity governing the observation. A Tikhonov regularization technique is also applied to reduce the possibly deleterious effects of the noise present in the observation and to warrant that the problem remains well posed. Standard error propagation techniques are included in order to estimate the uncertainties affecting the retrieved emission rate. Several theoretical tests of the inversion techniques are carried out to show its validity and robustness. In particular, we show that the Abel inversion of real data is only weakly sensitive to an offset applied to the input flux, which implies that the method, applied to the study of a cometary atmosphere, is only weakly dependent on uncertainties on the sky background which has to be subtracted from the raw observations of the coma. We apply the method to observations of three different comets observed using the TRAPPIST telescope: 103P/ Hartley 2, F6/ Lemmon and A1/ Siding Spring. We show that the method retrieves realistic emission rates, and that characteristic lengths and production rates can be derived from the emission rate for both CN and C2 molecules. We show that the retrieved characteristic lengths can differ from those obtained from a direct least squares fitting over the observed flux of radiation, and that discrepancies can be reconciled for by correcting this flux by an offset (to which the inverse Abel transform is nearly not sensitive). The A1/Siding Spring observations were obtained very shortly after the comet produced an outburst, and we show that the emission rate derived from the observed flux of CN emission at 387 nm and from the C2 emission at 514.1 nm both present an easily-identifiable shoulder that corresponds to the separation between pre- and post-outburst gas. As a general result, we show that diagnosing properties and features of the coma using the emission rate is easier than directly using the observed flux, because the Abel transform produces a smoothing that blurs the signatures left by features present in the coma. We also determine the parameters of a Haser model fitting the inverted data and fitting the line-of-sight integrated observation, for which we provide the exact analytical expression of the line-of-sight integration of the Haser model

    Estimates of non-thermal atmospheric loss of exoplanet GJ 436b due to dissociation processes H2

    Full text link
    Оценен вклад процессов диссоциации молекулярного водорода жестким ультрафиолетовым (УФ) излучением и сопутствующим потоком фотоэлектронов в образование фракции надтеплового атомарного водорода в переходной H2 −→ H области и формирование нетеплового потока убегания из протяженной верхней атмосферы экзопланеты — горячего нептуна GJ 436b. Рассчитаны скорость образования и энергетический спектр атомов водорода, образующихся с избытком кинетической энергии при диссоциации H2.The contribution of the processes of dissociation of molecular hydrogen by hard ultraviolet (UV) radiation and the accompanying flux of photoelectrons to the formation of the fraction of suprathermal atomic hydrogen in the transition H2 −→ H region and the formation of the non-thermal escape flux from the extended upper atmosphere of the exoplanet — hot neptune GJ 436b — is estimated. The rate of formation and the energy spectrum of hydrogen atoms formed with an excess of kinetic energy during the dissociation of H2 are calculated.Исследование выполнено в рамках проекта № 075-15-2020-780 «Теоретические и экспериментальные исследования формирования и эволюции внесолнечных планетных систем и характеристик экзопланет» Министерства науки и высшего образования РФ

    Objectives of the Millimetron Space Observatory science program and technical capabilities of its realization

    Get PDF
    We present the scientific program of the Spectr-M project aimed at the creation and operation of the Millimetron Space Observatory (MSO) planned for launch in the late 2020s. The unique technical capabilities of the observatory will enable broadband observations of astronomical objects from 50 μm to 10 mm wavelengths with a record sensitivity (up to ~ 0.1 μJy) in the single-dish mode and with an unprecedented high angular resolution (~ 0.1 μas) in the ground-space very long baseline interferometer (SVLBI) regime. The program addresses fundamental priority issues of astrophysics and physics in general that can be solved only with the MSO capabilities: 1) the study of physical processes in the early Universe up to redshifts z ~ 2 × 106 through measuring μ-distortions of the cosmic microwave background (CMB) spectrum, and investigation of the structure and evolution of the Universe at redshifts z < 15 by measuring y-distortions of the CMB spectrum; 2) the investigation of the geometry of space-time around supermassive black holes (SMBHs) in the center of our Galaxy and M87 by imaging surrounding shadows, the study of plasma properties in the shadow formation regions, and the search for observational manifestations of wormholes; 3) the study of observational manifestations of the origin of life in the Universe - the search for water and biomarkers in the Galactic interstellar medium. Moreover, the technical capabilities of the MSO can help solve related problems, including the birth of the first galaxies and SMBHs (z ≳ 10), alternative approaches to measuring the Hubble constant, the physics of SMBHs in 'dusty' galactic nuclei, the study of protoplanetary disks and water transport in them, and the study of 'ocean worlds' in the Solar System
    corecore