289 research outputs found

    The sounds of science - A symphony for many instruments and voices

    Get PDF
    Sounds of Science is the first movement of a symphony for many (scientific) instruments and voices, united in celebration of the frontiers of science and intended for a general audience. John Goodenough, the maestro who transformed energy usage and technology through the invention of the lithium-ion battery, opens the programme, reflecting on the ultimate limits of battery technology. This applied theme continues through the subsequent pieces on energy-related topics - the sodium-ion battery and artificial fuels, by Martin Månsson - and the ultimate challenge for 3D printing, the eventual production of life, by Anthony Atala. A passage by Gerianne Alexander follows, contemplating a related issue: How might an artificially produced human being behave? Next comes a consideration of consciousness and free will by Roland Allen and Suzy Lidström. Further voices and new instruments enter as Warwick Bowen, Nicolas Mauranyapin and Lars Madsen discuss whether dynamical processes of single molecules might be observed in their native state. The exploitation of chaos in science and technology, applications of Bose-Einstein condensates and the significance of entropy follow in pieces by Linda Reichl, Ernst Rasel and Roland Allen, respectively. Mikhail Katsnelson and Eugene Koonin then discuss the potential generalisation of thermodynamic concepts in the context of biological evolution. Entering with the music of the cosmos, Philip Yasskin discusses whether we might be able to observe torsion in the geometry of the Universe. The crescendo comes with the crisis of singularities, their nature and whether they can be resolved through quantum effects, in the composition of Alan Coley. The climax is Mario Krenn, Art Melvin and Anton Zeilinger\u27s consideration of how computer code can be autonomously surprising and creative. In a harmonious counterpoint, his \u27Guidelines for considering AIs as coauthors\u27, Roman Yampolskiy concludes that code is not yet able to take responsibility for coauthoring a paper. An interlude summarises a speech by Zdeněk Papoušek. In a subsequent movement, new themes emerge as we seek to comprehend how far we have travelled along the path to understanding, and speculate on where new physics might arise. Who would have imagined, 100 years ago, a global society permeated by smartphones and scientific instruments so sophisticated that genes can be modified and gravitational waves detected

    How have ART treatment programmes changed the patterns of excess mortality in people living with HIV? Estimates from four countries in East and Southern Africa

    Get PDF
    Background: Substantial falls in the mortality of people living with HIV (PLWH) have been observed since the introduction of antiretroviral therapy (ART) in sub-Saharan Africa. However, access and uptake of ART have been variable in many countries. We report the excess deaths observed in PLWH before and after the introduction of ART. We use data from five longitudinal studies in Malawi, South Africa, Tanzania, and Uganda, members of the network for Analysing Longitudinal Population-based HIV/AIDS data on Africa (ALPHA). Methods: Individual data from five demographic surveillance sites that conduct HIV testing were used to estimate mortality attributable to HIV, calculated as the difference between the mortality rates in PLWH and HIV-negative people. Excess deaths in PLWH were standardized for age and sex differences and summarized over periods before and after ART became generally available. An exponential regression model was used to explore differences in the impact of ART over the different sites. Results: 127,585 adults across the five sites contributed a total of 487,242 person years. Before the introduction of ART, HIV-attributable mortality ranged from 45 to 88 deaths per 1,000 person years. Following ART availability, this reduced to 14–46 deaths per 1,000 person years. Exponential regression modeling showed a reduction of more than 50% (HR =0.43, 95% CI: 0.32–0.58), compared to the period before ART was available, in mortality at ages 15–54 across all five sites. Discussion: Excess mortality in adults living with HIV has reduced by over 50% in five communities in sub-Saharan Africa since the advent of ART. However, mortality rates in adults living with HIV are still 10 times higher than in HIV-negative people, indicating that substantial improvements can be made to reduce mortality further. This analysis shows differences in the impact across the sites, and contrasts with developed countries where mortality among PLWH on ART can be similar to that of the general population. Further research is urgently needed to establish why the different impacts on mortality were observed and how the care and treatment programmes in these countries can be more effective in reducing mortality further

    Selection in Coastal Synechococcus (Cyanobacteria) Populations Evaluated from Environmental Metagenomes

    Get PDF
    Environmental metagenomics provides snippets of genomic sequences from all organisms in an environmental sample and are an unprecedented resource of information for investigating microbial population genetics. Current analytical methods, however, are poorly equipped to handle metagenomic data, particularly of short, unlinked sequences. A custom analytical pipeline was developed to calculate dN/dS ratios, a common metric to evaluate the role of selection in the evolution of a gene, from environmental metagenomes sequenced using 454 technology of flow-sorted populations of marine Synechococcus, the dominant cyanobacteria in coastal environments. The large majority of genes (98%) have evolved under purifying selection (dN/dS<1). The metagenome sequence coverage of the reference genomes was not uniform and genes that were highly represented in the environment (i.e. high read coverage) tended to be more evolutionarily conserved. Of the genes that may have evolved under positive selection (dN/dS>1), 77 out of 83 (93%) were hypothetical. Notable among annotated genes, ribosomal protein L35 appears to be under positive selection in one Synechococcus population. Other annotated genes, in particular a possible porin, a large-conductance mechanosensitive channel, an ATP binding component of an ABC transporter, and a homologue of a pilus retraction protein had regions of the gene with elevated dN/dS. With the increasing use of next-generation sequencing in metagenomic investigations of microbial diversity and ecology, analytical methods need to accommodate the peculiarities of these data streams. By developing a means to analyze population diversity data from these environmental metagenomes, we have provided the first insight into the role of selection in the evolution of Synechococcus, a globally significant primary producer

    Silencing, Positive Selection and Parallel Evolution: Busy History of Primate Cytochromes c

    Get PDF
    Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades

    First-Step Mutations for Adaptation at Elevated Temperature Increase Capsid Stability in a Virus

    Get PDF
    The relationship between mutation, protein stability and protein function plays a central role in molecular evolution. Mutations tend to be destabilizing, including those that would confer novel functions such as host-switching or antibiotic resistance. Elevated temperature may play an important role in preadapting a protein for such novel functions by selecting for stabilizing mutations. In this study, we test the stability change conferred by single mutations that arise in a G4-like bacteriophage adapting to elevated temperature. The vast majority of these mutations map to interfaces between viral coat proteins, suggesting they affect protein-protein interactions. We assess their effects by estimating thermodynamic stability using molecular dynamic simulations and measuring kinetic stability using experimental decay assays. The results indicate that most, though not all, of the observed mutations are stabilizing

    Lamin A Rod Domain Mutants Target Heterochromatin Protein 1α and β for Proteasomal Degradation by Activation of F-Box Protein, FBXW10

    Get PDF
    Lamins are major structural proteins of the nucleus and contribute to the organization of various nuclear functions. Mutations in the human lamin A gene cause a number of highly degenerative diseases, collectively termed as laminopathies. Cells expressing lamin mutations exhibit abnormal nuclear morphology and altered heterochromatin organization; however, the mechanisms responsible for these defects are not well understood.The lamin A rod domain mutants G232E, Q294P and R386K are either diffusely distributed or form large aggregates in the nucleoplasm, resulting in aberrant nuclear morphology in various cell types. We examined the effects of these lamin mutants on the distribution of heterochromatin protein 1 (HP1) isoforms. HeLa cells expressing these mutants showed a heterogeneous pattern of HP1alpha and beta depletion but without altering HP1gamma levels. Changes in HP1alpha and beta were not observed in cells expressing wild-type lamin A or mutant R482L, which assembled normally at the nuclear rim. Treatment with proteasomal inhibitors led to restoration of levels of HP1 isoforms and also resulted in stable association of lamin mutants with the nuclear periphery, rim localization of the inner nuclear membrane lamin-binding protein emerin and partial improvement of nuclear morphology. A comparison of the stability of HP1 isoforms indicated that HP1alpha and beta displayed increased turnover and higher basal levels of ubiquitination than HP1gamma. Transcript analysis of components of the ubiquitination pathway showed that a specific F-box protein, FBXW10 was induced several-fold in cells expressing lamin mutants. Importantly, ectopic expression of FBXW10 in HeLa cells led to depletion of HP1alpha and beta without alteration of HP1gamma levels.Mislocalized lamins can induce ubiquitin-mediated proteasomal degradation of certain HP1 isoforms by activation of FBXW10, a member of the F-box family of proteins that is involved in E3 ubiquitin ligase activity

    Microfluidic device for robust generation of two-component liquid-in-air slugs with individually controlled composition

    Get PDF
    Using liquid slugs as microreactors and microvessels enable precise control over the conditions of their contents on short-time scales for a wide variety of applications. Particularly for screening applications, there is a need for control of slug parameters such as size and composition. We describe a new microfluidic approach for creating slugs in air, each comprising a size and composition that can be selected individually for each slug. Two-component slugs are formed by first metering the desired volume of each reagent, merging the two volumes into an end-to-end slug, and propelling the slug to induce mixing. Volume control is achieved by a novel mechanism: two closed chambers on the chip are initially filled with air, and a valve in each is briefly opened to admit one of the reagents. The pressure of each reagent can be individually selected and determines the amount of air compression, and thus the amount of liquid that is admitted into each chamber. We describe the theory of operation, characterize the slug generation chip, and demonstrate the creation of slugs of different compositions. The use of microvalves in this approach enables robust operation with different liquids, and also enables one to work with extremely small samples, even down to a few slug volumes. The latter is important for applications involving precious reagents such as optimizing the reaction conditions for radiolabeling biological molecules as tracers for positron emission tomography

    PI 3 Kinase Related Kinases-Independent Proteolysis of BRCA1 Regulates Rad51 Recruitment during Genotoxic Stress in Human Cells

    Get PDF
    The function of BRCA1 in response to ionizing radiation, which directly generates DNA double strand breaks, has been extensively characterized. However previous investigations have produced conflicting data on mutagens that initially induce other classes of DNA adducts. Because of the fundamental and clinical importance of understanding BRCA1 function, we sought to rigorously evaluate the role of this tumor suppressor in response to diverse forms of genotoxic stress.We investigated BRCA1 stability and localization in various human cells treated with model mutagens that trigger different DNA damage signaling pathways. We established that, unlike ionizing radiation, either UVC or methylmethanesulfonate (MMS) (generating bulky DNA adducts or alkylated bases respectively) induces a transient downregulation of BRCA1 protein which is neither prevented nor enhanced by inhibition of PIKKs. Moreover, we found that the proteasome mediates early degradation of BRCA1, BARD1, BACH1, and Rad52 implying that critical components of the homologous recombination machinery need to be functionally abrogated as part of the early response to UV or MMS. Significantly, we found that inhibition of BRCA1/BARD1 downregulation is accompanied by the unscheduled recruitment of both proteins to chromatin along with Rad51. Consistently, treatment of cells with MMS engendered complete disassembly of Rad51 from pre-formed ionizing radiation-induced foci. Following the initial phase of BRCA1/BARD1 downregulation, we found that the recovery of these proteins in foci coincides with the formation of RPA and Rad51 foci. This indicates that homologous recombination is reactivated at later stage of the cellular response to MMS, most likely to repair DSBs generated by replication blocks.Taken together our results demonstrate that (i) the stabilities of BRCA1/BARD1 complexes are regulated in a mutagen-specific manner, and (ii) indicate the existence of mechanisms that may be required to prevent the simultaneous recruitment of conflicting signaling pathways to sites of DNA damage
    corecore