82 research outputs found

    The relevance of the UPS in the fatty liver graft preservation: a new approach for IGL-1 and HTK solutions

    Get PDF
    The 26S proteasome is the central proteolytic machinery of the ubiquitin proteasome system (UPS), which is involved in the degradation of ubiquitinated protein substrates. Recently, UPS inhibition has been shown to be a key factor in fatty liver graft preservation during organ cold storage using University of Wisconsin solution (UW) and Institute Georges Lopez (IGL-1) solutions. However, the merits of IGL-1 and histidine-tryptophan-ketoglutarate (HTK) solutions for fatty liver preservation have not been compared. Fatty liver grafts from obese Zücker rats were preserved for 24 h at 4 °C. Aspartate aminotransferase and alanine aminotransferase (AST/ALT), glutamate dehydrogenase (GLDH), ATP, adenosine monophosphate protein kinase (AMPK), e-NOS, proteasome activity and liver polyubiquitinated proteins were determined. IGL-1 solution prevented ATP breakdown during cold-storage preservation of steatotic livers to a greater extent than HTK solution. There were concomitant increases in AMPK activation, e-NOS (endothelial NOS (NO synthase)) expression and UPS inhibition. UPS activity is closely related to the composition of the solution used to preserve the organ. IGL-1 solution provided significantly better protection against ischemia-reperfusion for cold-stored fatty liver grafts than HTK solution. The effect is exerted through the activation of the protective AMPK signaling pathway, an increase in e-NOS expression and a dysregulation of the UPS

    Stroke risk associated with balloon based catheter ablation for atrial fibrillation: Rationale and design of the MACPAF Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Catheter ablation of the pulmonary veins has become accepted as a standard therapeutic approach for symptomatic paroxysmal atrial fibrillation (AF). However, there is some evidence for an ablation associated (silent) stroke risk, lowering the hope to limit the stroke risk by restoration of rhythm over rate control in AF. The purpose of the prospective randomized single-center study "Mesh Ablator versus Cryoballoon Pulmonary Vein Ablation of Symptomatic Paroxysmal Atrial Fibrillation" (MACPAF) is to compare the efficacy and safety of two balloon based pulmonary vein ablation systems in patients with symptomatic paroxysmal AF.</p> <p>Methods/Design</p> <p>Patients are randomized 1:1 for the Arctic Front<sup>® </sup>or the HD Mesh Ablator<sup>® </sup>catheter for left atrial catheter ablation (LACA). The predefined endpoints will be assessed by brain magnetic resonance imaging (MRI), neuro(psycho)logical tests and a subcutaneously implanted reveal recorder for AF detection. According to statistics 108 patients will be enrolled.</p> <p>Discussion</p> <p>Findings from the MACPAF trial will help to balance the benefits and risks of LACA for symptomatic paroxysmal AF. Using serial brain MRIs might help to identify patients at risk for LACA-associated cerebral thromboembolism. Potential limitations of the study are the single-center design, the existence of a variety of LACA-catheters, the missing placebo-group and the impossibility to assess the primary endpoint in a blinded fashion.</p> <p>Trial registration</p> <p>clinicaltrials.gov NCT01061931</p

    Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Mycobacterium tuberculosis</it>, the causative agent of tuberculosis (TB), infects ~8 million annually culminating in ~2 million deaths. Moreover, about one third of the population is latently infected, 10% of which develop disease during lifetime. Current approved prophylactic TB vaccines (BCG and derivatives thereof) are of variable efficiency in adult protection against pulmonary TB (0%–80%), and directed essentially against early phase infection.</p> <p>Methods</p> <p>A genome-scale dataset was constructed by analyzing published data of: (1) global gene expression studies under conditions which simulate intra-macrophage stress, dormancy, persistence and/or reactivation; (2) cellular and humoral immunity, and vaccine potential. This information was compiled along with revised annotation/bioinformatic characterization of selected gene products and <it>in silico </it>mapping of T-cell epitopes. Protocols for scoring, ranking and prioritization of the antigens were developed and applied.</p> <p>Results</p> <p>Cross-matching of literature and <it>in silico</it>-derived data, in conjunction with the prioritization scheme and biological rationale, allowed for selection of 189 putative vaccine candidates from the entire genome. Within the 189 set, the relative distribution of antigens in 3 functional categories differs significantly from their distribution in the whole genome, with reduction in the Conserved hypothetical category (due to improved annotation) and enrichment in Lipid and in Virulence categories. Other prominent representatives in the 189 set are the PE/PPE proteins; iron sequestration, nitroreductases and proteases, all within the Intermediary metabolism and respiration category; ESX secretion systems, resuscitation promoting factors and lipoproteins, all within the Cell wall category. Application of a ranking scheme based on qualitative and quantitative scores, resulted in a list of 45 best-scoring antigens, of which: 74% belong to the dormancy/reactivation/resuscitation classes; 30% belong to the Cell wall category; 13% are classical vaccine candidates; 9% are categorized Conserved hypotheticals, all potentially very potent T-cell antigens.</p> <p>Conclusion</p> <p>The comprehensive literature and <it>in silico</it>-based analyses allowed for the selection of a repertoire of 189 vaccine candidates, out of the whole-genome 3989 ORF products. This repertoire, which was ranked to generate a list of 45 top-hits antigens, is a platform for selection of genes covering all stages of <it>M. tuberculosis </it>infection, to be incorporated in rBCG or subunit-based vaccines.</p

    Cognitive decline in Huntington's disease expansion gene carriers

    Get PDF
    BACKGROUND: In Huntington's Disease (HD) cognitive decline can occur before unequivocal motor signs become apparent. As cognitive decline often starts early in the course of the disease and has a progressive nature over time, cognition can be regarded as a key target for symptomatic treatment. The specific progressive profile of cognitive decline over time is unknown. OBJECTIVE: The aim of this study is to quantify the progression of cognitive decline across all HD stages, from pre-motormanifest to advanced HD, and to investigate if CAG length mediates cognitive decline. METHODS: In the European REGISTRY study 2669 HD expansion gene carriers underwent annual cognitive assessment. General linear mixed models were used to model the cognitive decline for each cognitive task across all disease stages. Additionally, a model was developed to evaluate the cognitive decline based on CAG length and age rather than disease stage. RESULTS: There was significant cognitive decline on all administered tasks throughout pre-motormanifest (close to estimated disease onset) participants and the subsequent motormanifest participants from stage 1 to stage 4. Performance on the Stroop Word and Stroop Color tests additionally declined significantly across the two pre-motormanifest groups: far and close to estimated disease onset. The evaluation of cognition performance in relation to CAG length and age revealed a more rapid cognitive decline in participants with longer CAG length than participants with shorter CAG length over time. CONCLUSION: Cognitive performance already shows decline in pre-motormanifest HD gene expansion carriers and gradually worsens to late stage HD. HD gene expansion carriers with certain CAG length have their own cognitive profile, i.e., longer CAG length is associated with more rapid decline

    Reduced Cancer Incidence in Huntington's Disease: Analysis in the Registry Study

    Get PDF
    Background: People with Huntington’s disease (HD) have been observed to have lower rates of cancers. Objective: To investigate the relationship between age of onset of HD, CAG repeat length, and cancer diagnosis. Methods: Data were obtained from the European Huntington’s disease network REGISTRY study for 6540 subjects. Population cancer incidence was ascertained from the GLOBOCAN database to obtain standardised incidence ratios of cancers in the REGISTRY subjects. Results: 173/6528 HD REGISTRY subjects had had a cancer diagnosis. The age-standardised incidence rate of all cancers in the REGISTRY HD population was 0.26 (CI 0.22–0.30). Individual cancers showed a lower age-standardised incidence rate compared with the control population with prostate and colorectal cancers showing the lowest rates. There was no effect of CAG length on the likelihood of cancer, but a cancer diagnosis within the last year was associated with a greatly increased rate of HD onset (Hazard Ratio 18.94, p < 0.001). Conclusions: Cancer is less common than expected in the HD population, confirming previous reports. However, this does not appear to be related to CAG length in HTT. A recent diagnosis of cancer increases the risk of HD onset at any age, likely due to increased investigation following a cancer diagnosis

    Exogenous adenosine enhances caspase-3 activity in warm renal ischaemia

    No full text

    The potential of microvessel density in prediction of infarct growth: A two-month experimental study in vessel size imaging

    No full text
    Objectives: Vessel size imaging is a novel technique to evaluate pathological changes of the microvessel density quantity Q and the mean vessel size index (VSI). As a follow-up study, we assessed these parameters for microscopic description of ischemic penumbra and their potentials in predicting lesion growth. Methods: Seventy-five patients with a perfusion-diffusion mismatch were examined within 24 h from symptom onset. We defined three regions of interest: the initial infarct (INF), the ischemic penumbra (IPE), and the healthy region (HEA) symmetric to the IPE. For 23 patients with a 6th-day follow-up, IPE regions were divided into areas of infarct growth and areas of oligemia. Result: The median values of Q and VSI were: for INF 0.29 s-1/3 and 15.8 µm, for IPE 0.33 s-1/3 and 20.6 µm and for HEA 0.36 s-1/3 and 17.4 µm. The Q in the IPE was significantly smaller than in HEA, and VSI was significantly larger. The Q with a threshold of 0.32 s-1/3 predicted the final infarction with a sensitivity of 69% and a specificity of 64%. Conclusions: The reduced Q and increased VSI in the IPE confirmed our previous pilot results. Although Q showed a trend to identify the severity of ischemia in an overall voxel population, its potential in predicting infarct growth needs to be further tested in a larger cohort including a clear status of reperfusion and recanalization

    Guanylate Binding Protein (GBP) 5 Is an Interferon-Inducible Inhibitor of HIV-1 Infectivity.

    No full text
    Guanylate binding proteins (GBPs) are an interferon (IFN)-inducible subfamily of guanosine triphosphatases (GTPases) with well-established activity against intracellular bacteria and parasites. Here we show that GBP5 potently restricts HIV-1 and other retroviruses. GBP5 is expressed in the primary target cells of HIV-1, where it impairs viral infectivity by interfering with the processing and virion incorporation of the viral envelope glycoprotein (Env). GBP5 levels in macrophages determine and inversely correlate with infectious HIV-1 yield over several orders of magnitude, which may explain the high donor variability in macrophage susceptibility to HIV. Antiviral activity requires Golgi localization of GBP5, but not its GTPase activity. Start codon mutations in the accessory vpu gene from macrophage-tropic HIV-1 strains conferred partial resistance to GBP5 inhibition by increasing Env expression. Our results identify GBP5 as an antiviral effector of the IFN response and may explain the increased frequency of defective vpu genes in primary HIV-1 strains

    CpG Frequency in the 5′ Third of the env Gene Determines Sensitivity of Primary HIV-1 Strains to the Zinc-Finger Antiviral Protein

    No full text
    Evasion of the zinc-finger antiviral protein (ZAP) may drive CpG dinucleotide suppression in HIV-1 and many other viral pathogens but the viral determinants of ZAP sensitivity are poorly defined. Here, we examined CpG suppression and ZAP sensitivity in a large number of primate lentiviruses and demonstrate that their genomic frequency of CpGs varies substantially and does not correlate with ZAP sensitivity. We further show that the number of CpG residues in a defined region at the 5′ end of the env gene together with structural features plays a key role in HIV-1 susceptibility to ZAP and correlates with differences in clinical progression rates in HIV-1-infected individuals. Our identification of a specific part of env as a major determinant of HIV-1 susceptibility to ZAP restriction provides a basis for future studies of the underlying inhibitory mechanisms and their potential relevance in the pathogenesis of AIDS.CpG dinucleotide suppression has been reported to allow HIV-1 to evade inhibition by the zinc-finger antiviral protein (ZAP). Here, we show that primate lentiviruses display marked differences in CpG frequencies across their genome, ranging from 0.44% in simian immunodeficiency virus SIVwrc from Western red colobus to 2.3% in SIVmon infecting mona monkeys. Moreover, functional analyses of a large panel of human and simian immunodeficiency viruses revealed that the magnitude of CpG suppression does not correlate with their susceptibility to ZAP. However, we found that the number of CpG dinucleotides within a region of ∼700 bases at the 5′ end of the env gene determines ZAP sensitivity of primary HIV-1 strains but not of HIV-2. Increased numbers of CpGs in this region were associated with reduced env mRNA expression and viral protein production. ZAP sensitivity profiles of chimeric simian-human immunodeficiency viruses (SHIVs) expressing different HIV-1 env genes were highly similar to those of the corresponding HIV-1 strains. The frequency of CpGs in the identified env region correlated with differences in clinical progression rates. Thus, the CpG frequency in a specific part of env, rather than the overall genomic CpG content, governs the susceptibility of HIV-1 to ZAP and might affect viral pathogenicity in vivo
    corecore