96 research outputs found

    Nano/microparticle incorporated chitosan fibers as tissue engineering scaffolds

    Get PDF
    [Excerpt] The aim of this study was to develop a bone tissue engineering scaffold with an inherent bone morphogenetic proteins BMP-2 and BMP-7 sequential delivery system. BMPs were encapsulated in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly(lactic acid-co-glycolic acid) (PLGA) nano/microparticules which are then introduced to a chitosan matrix by two methods: embedding in the chitosan fibers and then forming the scaffold or by forming the chitosan scaffold and then introducing the nano/microparticules. [...]info:eu-repo/semantics/publishedVersio

    Evaluating oxygen tensions related to bone marrow and matrix for msc differentiation in 2d and 3d biomimetic lamellar scaffolds

    Get PDF
    The physiological O microenvironment of mesenchymal stem cells (MSCs) and osteoblasts and the dimensionality of a substrate are known to be important in regulating cell phenotype and function. By providing the physiologically normoxic environments of bone marrow (5%) and matrix (12%), we assessed their potential to maintain stemness, induce osteogenic differentiation, and enhance the material properties in the micropatterned collagen/silk fibroin scaffolds that were produced in 2D or 3D. Expression of osterix (OSX) and vascular endothelial growth factor A (VEGFA) was significantly enhanced in the 3D scaffold in all oxygen environments. At 21% O , OSX and VEGFA expressions in the 3D scaffold were respectively 13,200 and 270 times higher than those of the 2D scaffold. Markers for assessing stemness were significantly more pronounced on tissue culture polystyrene and 2D scaffold incubated at 5% O . At 21% O , we measured significant increases in ultimate tensile strength (p < 0.0001) and Young’s modulus (p = 0.003) of the 3D scaffold compared to the 2D scaffold, whilst 5% O hindered the positive effect of cell seeding on tensile strength. In conclusion, we demonstrated that the 3D culture of MSCs in collagen/silk fibroin scaffolds provided biomimetic cues for bone progenitor cells toward differentiation and enhanced the tensile mechanical properties. 2 2 2 2

    Chemical and topographical modification of PHBV surface to promote osteoblast alignment and confinement

    Get PDF
    Proper cell attachment and distribution, and thus stronger association in vivo between a bone implant and native tissue will improve the success of the implant. In this study, the aim was to achieve promotion of attachment and uniform distribution of rat mesenchymal stem cell-derived osteoblasts by introducing chemical and topographical cues on poly(3-hydroxybutyrate-co-3- hydroxyvalerate) (PHBV) film surfaces. As the chemical cues, either alkaline phosphatase was covalently immobilized on the film surface to induce deposition of calcium phosphate minerals or fibrinogen was adsorbed to improve cell adhesion. Microgrooves and micropits were introduced on the film surface by negative replication of micropatterned Si wafers. Both chemical cues improved cell attachment and even distribution on the PHBV films, but Fb was more effective especially when combined with the micropatterns. Cell alignment (<10° deviation angle) parallel to chemically modified microgrooves (1, 3, or 8 μm groove width) and on 10 μm-thick Fb lines printed on the unpatterned films was achieved. The cells on unpatterned and 5 μm-deep micropitted films were distributed and oriented randomly. Results of this study proved that microtopographies on PHBV can improve osseointegration when combined with chemical cues, and that microgrooves and cell adhesive protein lines on PHBV can guide selective osteoblast adhesion and alignment. © 2007 Wiley Periodicals, Inc

    Cornea engineering on polyester carriers

    Get PDF
    In this study, biodegradable polyester based carriers were designed for tissue engineering of the epithelial and the stromal layers of the cornea, and the final construct was tested in vitro. In the construction of the epithelial layer, micropatterned films were prepared from blends of biodegradable and biocompatible polyesters of natural (PHBV) and synthetic (P(L/DL)LA) origin, and these films were seeded with D407 (retinal pigment epithelial) cells. To improve cell adhesion and growth, the films were coated with fibronectin. To serve as the stromal layer of the cornea, highly porous foams of P(L/DL)LA-PHBV blends were seeded with 3T3 fibroblasts. Cell numbers on the polyester carriers were significantly higher than those on the tissue culture polystyrene control. The cells and the carriers were characterized scanning electron micrographs showed that the foam was highly porous and the pores were interconnected. 3T3 Fibroblasts were distributed quite homogeneously at the seeding site, but probably because of the high thickness of the carrier (∼6 mm); they could not sufficiently populate the core (central parts of the foam) during the test duration. The D407 cells formed multilayers on the micropatterned polyester film. Immunohistochemical studies showed that the cells retained their phenotype during culturing; D407 cells formed tight junctions characteristic of epithelial cells, and 3T3 cells deposited collagen type I into the foams. On the basis of these results, we concluded that the micropatterned films and the foams made of P(L/DL)LA-PHBV blends have a serious potential as tissue engineering carriers for the reconstruction of the epithelial and stromal layers of the cornea. © 2006 Wiley Periodicals, Inc

    Contact guidance enhances the quality of a tissue engineered corneal stroma

    Get PDF
    Corneal stroma is a very complex structure, composed of 200 lamellae of oriented collagen fibers. This highly complex nature of cornea is known to be important for its transparency and mechanical integrity. Thus, an artificial cornea design has to take into account this complex structure. In this study, behavior of human corneal keratocytes on collagen films patterned with parallel channels was investigated. Keratocytes proliferated well on films and reached confluency after 7 days in the incubation medium. Nearly all of the cells responded to the patterns and were aligned in contrast to the cells on unpatterned surfaces. Collagen type I and keratan sulfate secreted by keratocytes on patterned films appeared to be aligned in the direction of the patterns. The films showed an intermediate degradation over the course of a month. On the whole, transparency of the films increased with degradation and decreased by the presence of the cells. The decrease was, however, low and transparency level was maintained on the patterned films while on the unpatterned films a sharp decrease in transparency was followed by an improvement. This was due to the more organized distribution of cells and the oriented secretion of extracellular matrix molecules on patterned collagen films. Thus, these results suggest that application of contact guidance in cornea tissue engineering may facilitate the remodeling process, hence decrease the rehabilitation period. © 2007 Wiley Periodicals, Inc

    Effect of double growth factor release on cartilage tissue engineering

    Get PDF
    The effects of double release of insulin-like growth factor I (IGF-I) and growth factor β1 (TGF-β1) from nanoparticles on the growth of bone marrow mesenchymal stem cells and their differentiation into cartilage cells were studied on PLGA scaffolds. The release was achieved by using nanoparticles of poly(lactic acid-co-glycolic acid) (PLGA) and poly(N-isopropylacrylamide) (PNIPAM) carrying IGF-I and TGF-β1, respectively. On tissue culture polystyrene (TCPS), TGF-β1 released from PNIPAM nanoparticles was found to have a significant effect on proliferation, while IGF-I encouraged differentiation, as shown by collagen type II deposition. The study was then conducted on macroporous (pore size 200-400μm) PLGA scaffolds. It was observed that the combination of IGF-I and TGF-β1 yielded better results in terms of collagen type II and aggrecan expression than GF-free and single GF-containing applications. It thus appears that gradual release of a combination of growth factors from nanoparticles could make a significant contribution to the quality of the engineered cartilage tissue. © 2011 John Wiley & Sons, Ltd

    Fabrication of cell container arrays with overlaid surface topographies

    Get PDF
    This paper presents cell culture substrates in the form of microcontainer arrays with overlaid surface topographies, and a technology for their fabrication. The new fabrication technology is based on microscale thermoforming of thin polymer films whose surfaces are topographically prepatterned on a micro- or nanoscale. For microthermoforming, we apply a new process on the basis of temporary back moulding of polymer films and use the novel concept of a perforated-sheet-like mould. Thermal micro- or nanoimprinting is applied for prepatterning. The novel cell container arrays are fabricated from polylactic acid (PLA) films. The thin-walled microcontainer structures have the shape of a spherical calotte merging into a hexagonal shape at their upper circumferential edges. In the arrays, the cell containers are arranged densely packed in honeycomb fashion. The inner surfaces of the highly curved container walls are provided with various topographical micro- and nanopatterns. For a first validation of the microcontainer arrays as in vitro cell culture substrates, C2C12 mouse premyoblasts are cultured in containers with microgrooved surfaces and shown to align along the grooves in the three-dimensional film substrates. In future stem-cell-biological and tissue engineering applications, microcontainers fabricated using the proposed technology may act as geometrically defined artificial microenvironments or niches

    Functionalization of Carbon Nanomaterial Surface by Doxorubicin and Antibodies to Tumor Markers

    Get PDF
    The actual task of oncology is effective treatment of cancer while causing a minimum harm to the patient. The appearance of polymer nanomaterials and technologies launched new applications and approaches of delivery and release of anticancer drugs. The goal of work was to test ultra dispersed diamonds (UDDs) and onion-like carbon (OLCs) as new vehicles for delivery of antitumor drug (doxorubicin (DOX)) and specific antibodies to tumor receptors. Stable compounds of UDDs and OLCs with DOX were obtained. As results of work, an effectiveness of functionalization was 2.94 % w/w for OLC-DOX and 2.98 % w/w for UDD-DOX. Also, there was demonstrated that UDD-DOX and OLC-DOX constructs had dose-dependent cytotoxic effect on tumor cells in the presence of trypsin. The survival of adenocarcinoma cells reduced from 52 to 28 % in case of incubation with the UDD-DOX in concentrations from 8.4–2.5 to 670–20 μg/ml and from 72 to 30 % after incubation with OLC-DOX. Simultaneously, antibodies to epidermal growth factor maintained 75 % of the functional activity and specificity after matrix-assisted pulsed laser evaporation deposition. Thus, the conclusion has been made about the prospects of selected new methods and approaches for creating an antitumor agent with capabilities targeted delivery of drugs
    corecore