950 research outputs found

    Controlled Secret Sharing Protocol using a Quantum Cloning Circuit

    Full text link
    We demonstrate the possibility of controlling the success probability of a secret sharing protocol using a quantum cloning circuit. The cloning circuit is used to clone the qubits containing the encoded information and {\em en route} to the intended receipients. The success probability of the protocol depends on the cloning parameters used to clone the qubits. We also establish a relation between the concurrence of initially prepared state, entanglement of the mixed state received by the receivers after cloning scheme and the cloning parameters of cloning machine.Comment: This is a modified version of the previous work quant-ph/arXiv:1011.286

    Pembuatan Set Eksperimen Untuk Menentukan Koefisien Kinetik Dan Koefisien Restitusi

    Full text link
    This study aims to determine the design specifications set tool-making experiments to determine the kinetic coefficients and a coefficient of restitution of the collision of two objects using laser diode and sensor based LDR arduino uno. Results of the study is the design tool set of experiments could measure the kinetic coefficient between the glass material with glass with a relative error of 2.5%, wood with wood with a relative error of 1%, and steel materials with wood with a relative error of 0.5%. The coefficient of restitution is obtained for glass with glass material is 0.062, wood with wood is 0:49, and steel materials with wood is 0:22

    Marigold-globe amaranth sequential cropping in coconut plantations of coastal humid tropics

    Get PDF
    Marigold (Tagetus erecta) and globe amaranth (Gomphrena globosa) are two potential commercial loose flower crops with highmarket demand during festive seasons. Climate of coastal humid tropics is suitable for growing marigold and globe amaranthduring October to April and May to September, respectively, where the flowering season coincides with the peak demand fetchinghigher market price. A field study was conducted in two consecutive years at ICAR-CPCRI, Regional Station, Kayamkulamduring 2010-12 for standardising the nutrient management practice for marigold-globe amaranth sequential cropping under coconutbased farming system in coastal humid tropics. The treatments were fixed based on nitrogen equivalent basis. In the study,marigold alone was supplied with nutrition and globe amaranth was raised with the available field residues of first crop. Intercroppingmarigold was supplied with basal dose of vermicompost (16.8 kg N ha-1) followed by 16.8:18:18 kg NPK ha-1 at 15 days aftertransplanting and vermicompost extract (1:10), to meet 4.4 kg N ha-1 equivalent, at 30 days and 45 days after transplantingresulted in fresh flower yield of 2 t ha-1 of coconut plantations. The plant height, number of primary and secondary branches,number of flowers plant-1, flower yield, and flower carotenoid content of marigold were also higher in this treatment. The growthor yield of globe amaranth did not differ among the treatments, and on an average it produced fresh flower yield of 1.9 t ha-1 fromthe interspaces of coconut. This study on sequential cropping of flower crops revealed that substituting 50 per cent inorganicnitrogen requirement of marigold with vermicompost enhances its growth performance and also provides adequate nutrition forraising globe amaranth during its vegetative phase (upto 60 days after transplanting) resulting in a B:C ratio of 2.8

    Test Port for Fiber-Optic-Coupled Laser Altimeter

    Get PDF
    A test port designed as part of a fiber optic coupled laser altimeter receiver optical system allows for the back-illumination of the optical system for alignment verification, as well as illumination of the detector(s) for testing the receiver electronics and signal-processing algorithms. Measuring the optical alignment of a laser altimeter instrument is difficult after the instrument is fully assembled. The addition of a test port in the receiver aft-optics allows for the back-illumination of the receiver system such that its focal setting and boresight alignment can be easily verified. For a multiple-detector receiver system, the addition of the aft-optics test port offers the added advantage of being able to simultaneously test all the detectors with different signals that simulate the expected operational conditions. On a laser altimeter instrument (see figure), the aft-optics couple the light from the receiver telescope to the receiver detector(s). Incorporating a beam splitter in the aft-optics design allows for the addition of a test port to back-illuminate the receiver telescope and/or detectors. The aft-optics layout resembles a T with the detector on one leg, the receiver telescope input port on the second leg, and the test port on the third leg. The use of a custom beam splitter with 99-percent reflection, 1-percent transmission, and a mirrored roof can send the test port light to the receiver telescope leg as well as the detector leg, without unduly sacrificing the signal from the receiver telescope to the detector. The ability to test the receiver system alignment, as well as multiple detectors with different signals without the need to disassemble the instrument or connect and reconnect components, is a great advantage to the aft-optics test port. Another benefit is that the receiver telescope aperture is fully back-illuminated by the test port so the receiver telescope focal setting vs. pressure and or temperature can be accurately measured (as compared to schemes where the aperture is only partially illuminated). Fiber-optic coupling the test port also allows for the modularity of testing the receiver detectors with a variety of background and signal laser sources without the need of using complex optical set-ups to optimize the efficiency of each source

    Target Assembly to Check Boresight Alignment of Active Sensors

    Get PDF
    A compact and portable target assembly (Fig. 1) has been developed to measure the boresite alignment of LRO's Lunar Orbiter Laser Altimeter (LOLA) instrument at the spacecraft level. The concept for this target assembly has evolved over many years with earlier versions used to test the Mars Observer Laser Altimeter (MOLA), the Geoscience Laser Altimeter System (GLAS), and the Mercury Laser Altimeter (MLA) space-based instruments

    Chemical pretreatment of cells for enhanced MALDI-TOF-MS discrimination of clinical staphylococci including MRSA

    Get PDF
    BACKGROUND: Limited success has been reported for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) differentiation of staphylococci, including methicillin resistant Staphylococcus aureus (MRSA) strains. Chemical pretreatment of cells prior to MALDI-TOF-MS analysis has not been systematically investigated for enhanced discrimination of S.aureus strains. OBJECTIVES: To evaluate various chemical pretreatment of cells for MALDI-TOF-MS discrimination of clinical staphylococcal isolates, with a focus on differentiation of MRSA from methicillin sensitive S. aureus (MSSA) strains and from other staphylococcal species. METHOD: MALDI-TOF-MS of a well-characterised S. aureus strain(s) was optimised with respect to matrix chemical(s), matrix solvent and target plating method. Various chemical pretreatments (solvents, reductants, detergents) and pretreatment application methods were then evaluated for enhancement of spectral richness. The three most promising pretreatments were applied to MALDI-TOF-MS discrimination of three set of clinical isolates comprising non-S.aureus staphylococci (77 isolates ), MSSA (36) and MRSA (43), with analysis by total or set specific resolved peaks. RESULTS: The optimized MALDI-TOF-MS protocol involved α-cyano-4-hydroxycinnamic acid (CHCA) as matrix chemical (in 1:2 acetonitrile:H2O and 2% trifluoroacetic acid), with application as an overlay onto smeared cells (on-probe). On-probe application of chemical pretreatment was most effective at enhancing MALDI-TOF-MS spectral richness. Use of reductants and detergents as pretreatments were ineffective. The three most effective solvents/acid pretreatments - ethanol:formate, ethanol:acetate and formate:isopropanol - each generated reproducible and distinct spectra over the 2,000 -10,000 m/z range. For the combined sets of clinical isolates (114), all three of these pretreatments increased the total number of resolved peaks in comparison with no pretreatment controls. The ethanol:formate pretreatment gave 100% clustering of non-S. aureus staphylococci, based on total resolved peaks. The formate:isopropanol pretreatment generated the largest increase in number of MRSA set specific peaks (from 18 to 32; 78% increase) and clustered the majority (77%) of the MRSA strains together, although compete discrimination of the MSSA and MRSA was not achieved. CONCLUSION: MALDI-TOF-MS discrimination of clinical isolates of staphylococci is enhanced through chemical pretreatment of cells. Three chemical pretreatments, not previously applied to staphylococci, are highlighted for enhancing spectral richness and offering new opportunities for improved discrimination of staphylococci, including MRSA and MSSA strains

    Chemical pretreatment of cells for enhanced MALDI-TOF-MS discrimination of clinical staphylococci including MRSA

    Get PDF
    BACKGROUND: Limited success has been reported for matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) differentiation of staphylococci, including methicillin resistant Staphylococcus aureus (MRSA) strains. Chemical pretreatment of cells prior to MALDI-TOF-MS analysis has not been systematically investigated for enhanced discrimination of S.aureus strains. OBJECTIVES: To evaluate various chemical pretreatment of cells for MALDI-TOF-MS discrimination of clinical staphylococcal isolates, with a focus on differentiation of MRSA from methicillin sensitive S. aureus (MSSA) strains and from other staphylococcal species. METHOD: MALDI-TOF-MS of a well-characterised S. aureus strain(s) was optimised with respect to matrix chemical(s), matrix solvent and target plating method. Various chemical pretreatments (solvents, reductants, detergents) and pretreatment application methods were then evaluated for enhancement of spectral richness. The three most promising pretreatments were applied to MALDI-TOF-MS discrimination of three set of clinical isolates comprising non-S.aureus staphylococci (77 isolates ), MSSA (36) and MRSA (43), with analysis by total or set specific resolved peaks. RESULTS: The optimized MALDI-TOF-MS protocol involved α-cyano-4-hydroxycinnamic acid (CHCA) as matrix chemical (in 1:2 acetonitrile:H2O and 2% trifluoroacetic acid), with application as an overlay onto smeared cells (on-probe). On-probe application of chemical pretreatment was most effective at enhancing MALDI-TOF-MS spectral richness. Use of reductants and detergents as pretreatments were ineffective. The three most effective solvents/acid pretreatments - ethanol:formate, ethanol:acetate and formate:isopropanol - each generated reproducible and distinct spectra over the 2,000 -10,000 m/z range. For the combined sets of clinical isolates (114), all three of these pretreatments increased the total number of resolved peaks in comparison with no pretreatment controls. The ethanol:formate pretreatment gave 100% clustering of non-S. aureus staphylococci, based on total resolved peaks. The formate:isopropanol pretreatment generated the largest increase in number of MRSA set specific peaks (from 18 to 32; 78% increase) and clustered the majority (77%) of the MRSA strains together, although compete discrimination of the MSSA and MRSA was not achieved. CONCLUSION: MALDI-TOF-MS discrimination of clinical isolates of staphylococci is enhanced through chemical pretreatment of cells. Three chemical pretreatments, not previously applied to staphylococci, are highlighted for enhancing spectral richness and offering new opportunities for improved discrimination of staphylococci, including MRSA and MSSA strains

    Appositeness of artificial intelligence in modern medicine

    Get PDF
    Artificial intelligence (AI) can be demonstrated as intelligence demonstrated by machines.AI research has gone through different phases like simulating the brain, modeling human problem solving, formal logic, large databases of knowledge and imitating animal behavior. In the beginning of 21st century, highly mathematical statistical machine learning has dominated the field, was found useful and considered in helping to solve many challenging problems throughout industry and academia. The domain was discovered and work was done on the assumption that human intelligence can be simulated by machines. These initiate some discussions in raising queries about the mind and the ethics of creating artificial beings with human-like intelligence. Myth, fiction, and philosophy are involved in the creation of this field. The debates and discussion also point to concerns of misuse regarding this technology.
    corecore