85 research outputs found

    Increased Prevalence of Metabolic Syndrome in Patients with Acne Inversa

    Get PDF
    BACKGROUND: Acne inversa (AI; also designated as Hidradenitis suppurativa) is a common chronic inflammatory skin disease, localized in the axillary, inguinal and perianal skin areas that causes painful, fistulating sinuses with malodorous purulence and scars. Several chronic inflammatory diseases are associated with the metabolic syndrome and its consequences including arteriosclerosis, coronary heart disease, myocardial infraction, and stroke. So far, the association of AI with systemic metabolic alterations is largely unexplored. METHODS AND FINDINGS: A hospital-based case-control study in 80 AI patients and 100 age- and sex-matched control participants was carried out. The prevalence of central obesity (odds ratio 5.88), hypertriglyceridemia (odds ratio 2.24), hypo-HDL-cholesterolemia (odds ratio 4.56), and hyperglycemia (odds ratio 4.09) in AI patients was significantly higher than in controls. Furthermore, the metabolic syndrome, previously defined as the presence of at least three of the five alterations listed above, was more common in those patients compared to controls (40.0% versus 13.0%; odds ratio 4.46, 95% confidence interval 2.02 to 9.96; P<0.001). AI patients with metabolic syndrome also had more pronounced metabolic alterations than controls with metabolic syndrome. Interestingly, there was no correlation between the severity or duration of the disease and the levels of respective parameters or the number of criteria defining the metabolic syndrome. Rather, the metabolic syndrome was observed in a disproportionately high percentage of young AI patients. CONCLUSIONS: This study shows for the first time that AI patients have a high prevalence of the metabolic syndrome and all of its criteria. It further suggests that the inflammation present in AI patients does not have a major impact on the development of metabolic alterations. Instead, evidence is given for a role of metabolic alterations in the development of AI. We recommend monitoring of AI patients in order to correct their modifiable cardiovascular risk factors

    Aberrant Cyclization Affords a C-6 Modified Cyclic Adenosine 5′-Diphosphoribose Analogue with Biological Activity in Jurkat T Cells

    Get PDF
    *S Supporting Information ABSTRACT: Two nicotinamide adenine dinucleotide (NAD +) analogues modified at the 6 position of the purine ring were synthesized, and their substrate properties toward Aplysia californica ADP-ribosyl cyclase were investigated. 6-N-Methyl NAD + (6-N-methyl nicotinamide adenosine 5′-dinucleotide 10) hydrolyzes to give the linear 6-N-methyl ADPR (adenosine 5′-diphosphoribose, 11), whereas 6-thio NHD + (nicotinamide 6-mercaptopurine 5′-dinucleotide, 17) generates a cyclic dinucleotide. Surprisingly, NMR correlation spectra confirm this compound to be the N1 cyclic product 6-thio N1-cIDPR (6-thio cyclic inosine 5′-diphosphoribose, 3), although the corresponding 6-oxo analogue is well-known to cyclize at N7. In Jurkat T cells, unlike the parent cyclic inosine 5′-diphosphoribose N1-cIDPR 2, 6-thio N1-cIDPR antagonizes both cADPR- and N1cIDPR-induced Ca 2+ release but possesses weak agonist activity at higher concentration. 3 is thus identified as the first C-6 modified cADPR (cyclic adenosine 5′-diphosphoribose) analogue antagonist; it represents the first example of a fluorescent N1cyclized cADPR analogue and is a new pharmacological tool for intervention in the cADPR pathway of cellular signaling

    Synthetic Nanoparticles for Vaccines and Immunotherapy

    Get PDF
    The immune system plays a critical role in our health. No other component of human physiology plays a decisive role in as diverse an array of maladies, from deadly diseases with which we are all familiar to equally terrible esoteric conditions: HIV, malaria, pneumococcal and influenza infections; cancer; atherosclerosis; autoimmune diseases such as lupus, diabetes, and multiple sclerosis. The importance of understanding the function of the immune system and learning how to modulate immunity to protect against or treat disease thus cannot be overstated. Fortunately, we are entering an exciting era where the science of immunology is defining pathways for the rational manipulation of the immune system at the cellular and molecular level, and this understanding is leading to dramatic advances in the clinic that are transforming the future of medicine.1,2 These initial advances are being made primarily through biologic drugs– recombinant proteins (especially antibodies) or patient-derived cell therapies– but exciting data from preclinical studies suggest that a marriage of approaches based in biotechnology with the materials science and chemistry of nanomaterials, especially nanoparticles, could enable more effective and safer immune engineering strategies. This review will examine these nanoparticle-based strategies to immune modulation in detail, and discuss the promise and outstanding challenges facing the field of immune engineering from a chemical biology/materials engineering perspectiveNational Institutes of Health (U.S.) (Grants AI111860, CA174795, CA172164, AI091693, and AI095109)United States. Department of Defense (W911NF-13-D-0001 and Awards W911NF-07-D-0004

    Beyond equilibrium climate sensitivity

    Get PDF
    ISSN:1752-0908ISSN:1752-089

    Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling

    Full text link

    Hygienic Washroom Facility Locator

    No full text

    Hygienic Washroom Facility Locator

    Full text link
    corecore