10,535 research outputs found

    Pyrotechnic device provides one-shot heat source

    Get PDF
    Pyrotechnic heater provides a one-shot heat source capable of creating a predetermined temperature around sealed packages. It is composed of a blend of an active chemical element and another compound which reacts exothermically when ignited and produces fixed quantities of heat

    Efficacy and Residue Comparisons between Two Slow-release Formulations of Fluridone

    Get PDF
    Residue profiles and efficacy of Avast and Sonar, two slow release pellet formulations of fluridone {1-methyl-3-phenyl-5- [3-(trifluoromethyl)phenly]-4(1H)-pyridinone}, were compared in outdoor tanks. Hydrilla (Hydrilla verticillata (L.f.) Royle) and southern naiad (Najas guadalupensis (Sprengel) Magnus) were treated with a split application of 6, 12, 18 and 24 μg/l a.i. fluridone and the concentrations of both formulations compared over a 134-day period. Both pellet formulations exhibited very similar residues over time for each respective treatment, resulted in peak concentrations of fluridone 40 to 50 days after application, and effectively and similarly controlled southern naiad and hydrilla at all rates tested by 92 days after initial application. (PDF contains 3 pages.

    Reduced-order Description of Transient Instabilities and Computation of Finite-Time Lyapunov Exponents

    Full text link
    High-dimensional chaotic dynamical systems can exhibit strongly transient features. These are often associated with instabilities that have finite-time duration. Because of the finite-time character of these transient events, their detection through infinite-time methods, e.g. long term averages, Lyapunov exponents or information about the statistical steady-state, is not possible. Here we utilize a recently developed framework, the Optimally Time-Dependent (OTD) modes, to extract a time-dependent subspace that spans the modes associated with transient features associated with finite-time instabilities. As the main result, we prove that the OTD modes, under appropriate conditions, converge exponentially fast to the eigendirections of the Cauchy--Green tensor associated with the most intense finite-time instabilities. Based on this observation, we develop a reduced-order method for the computation of finite-time Lyapunov exponents (FTLE) and vectors. In high-dimensional systems, the computational cost of the reduced-order method is orders of magnitude lower than the full FTLE computation. We demonstrate the validity of the theoretical findings on two numerical examples

    Precision Measurements of Stretching and Compression in Fluid Mixing

    Full text link
    The mixing of an impurity into a flowing fluid is an important process in many areas of science, including geophysical processes, chemical reactors, and microfluidic devices. In some cases, for example periodic flows, the concepts of nonlinear dynamics provide a deep theoretical basis for understanding mixing. Unfortunately, the building blocks of this theory, i.e. the fixed points and invariant manifolds of the associated Poincare map, have remained inaccessible to direct experimental study, thus limiting the insight that could be obtained. Using precision measurements of tracer particle trajectories in a two-dimensional fluid flow producing chaotic mixing, we directly measure the time-dependent stretching and compression fields. These quantities, previously available only numerically, attain local maxima along lines coinciding with the stable and unstable manifolds, thus revealing the dynamical structures that control mixing. Contours or level sets of a passive impurity field are found to be aligned parallel to the lines of large compression (unstable manifolds) at each instant. This connection appears to persist as the onset of turbulence is approached.Comment: 5 pages, 5 figure

    Excitonic Aharonov-Bohm Effect in Isotopically Pure 70Ge/Si Type-II Quantum Dots

    Full text link
    We report on a magneto-photoluminescence study of isotopically pure 70Ge/Si self-assembled type-II quantum dots. Oscillatory behaviors attributed to the Aharonov-Bohm effect are simultaneously observed for the emission energy and intensity of excitons subject to an increasing magnetic field. When the magnetic flux penetrates through the ring-like trajectory of an electron moving around each quantum dot, the ground state of an exciton experiences a change in its angular momentum. Our results provide the experimental evidence for the phase coherence of a localized electron wave function in group-IV Ge/Si self-assembled quantum structures.Comment: 4 pages, 4 figure

    Spin Susceptibility of Noncentrosymmetric Heavy-fermion Superconductor CeIrSi3 under Pressure: 29Si-Knight Shift Study on Single Crystal

    Full text link
    We report 29Si-NMR study on a single crystal of the heavy-fermion superconductor CeIrSi3 without an inversion symmetry along the c-axis. The 29Si-Knight shift measurements under pressure have revealed that the spin susceptibility for the ab-plane decreases slightly below Tc, whereas along the c-axis it does not change at all. The result can be accounted for by the spin susceptibility in the superconducting state being dominated by the strong antisymmetric (Rashba-type) spin-orbit interaction that originates from the absence of an inversion center along the c-axis and it being much larger than superconducting condensation energy. This is the first observation which exhibits an anisotropy of the spin susceptibility below Tc in the noncentrosymmetric superconductor dominated by strong Rashba-type spin-orbit interaction.Comment: 4 pages, 4 figures, Accepted for publication in Phys. Rev. Let

    Parabolic resonances and instabilities in near-integrable two degrees of freedom Hamiltonian flows

    Full text link
    When an integrable two-degrees-of-freedom Hamiltonian system possessing a circle of parabolic fixed points is perturbed, a parabolic resonance occurs. It is proved that its occurrence is generic for one parameter families (co-dimension one phenomenon) of near-integrable, t.d.o. systems. Numerical experiments indicate that the motion near a parabolic resonance exhibits new type of chaotic behavior which includes instabilities in some directions and long trapping times in others. Moreover, in a degenerate case, near a {\it flat parabolic resonance}, large scale instabilities appear. A model arising from an atmospherical study is shown to exhibit flat parabolic resonance. This supplies a simple mechanism for the transport of particles with {\it small} (i.e. atmospherically relevant) initial velocities from the vicinity of the equator to high latitudes. A modification of the model which allows the development of atmospherical jets unfolds the degeneracy, yet traces of the flat instabilities are clearly observed
    corecore