2,677 research outputs found

    A Dynamical Theory of Electron Transfer: Crossover from Weak to Strong Electronic Coupling

    Full text link
    We present a real-time path integral theory for the rate of electron transfer reactions. Using graph theoretic techniques, the dynamics is expressed in a formally exact way as a set of integral equations. With a simple approximation for the self-energy, the rate can then be computed analytically to all orders in the electronic coupling matrix element. We present results for the crossover region between weak (nonadiabatic) and strong (adiabatic) electronic coupling and show that this theory provides a rigorous justification for the salient features of the rate expected within conventional electron transfer theory. Nonetheless, we find distinct characteristics of quantum behavior even in the strongly adiabatic limit where classical rate theory is conventionally thought to be applicable. To our knowledge, this theory is the first systematic dynamical treatment of the full crossover region.Comment: 11 pages, LaTeX, 8 Postscript figures to be published in J. Chem. Phy

    Multilevel blocking approach to the fermion sign problem in path-integral Monte Carlo simulations

    Full text link
    A general algorithm toward the solution of the fermion sign problem in finite-temperature quantum Monte Carlo simulations has been formulated for discretized fermion path integrals with nearest-neighbor interactions in the Trotter direction. This multilevel approach systematically implements a simple blocking strategy in a recursive manner to synthesize the sign cancellations among different fermionic paths throughout the whole configuration space. The practical usefulness of the method is demonstrated for interacting electrons in a quantum dot.Comment: 4 pages RevTeX, incl. two figure

    Crossover from Fermi liquid to Wigner molecule behavior in quantum dots

    Full text link
    The crossover from weak to strong correlations in parabolic quantum dots at zero magnetic field is studied by numerically exact path-integral Monte Carlo simulations for up to eight electrons. By the use of a multilevel blocking algorithm, the simulations are carried out free of the fermion sign problem. We obtain a universal crossover only governed by the density parameter rsr_s. For rs>rcr_s>r_c, the data are consistent with a Wigner molecule description, while for rs<rcr_s<r_c, Fermi liquid behavior is recovered. The crossover value rc4r_c \approx 4 is surprisingly small.Comment: 4 pages RevTeX, 3 figures, corrected Tabl

    Dynamical simulation of transport in one-dimensional quantum wires

    Full text link
    Transport of single-channel spinless interacting fermions (Luttinger liquid) through a barrier has been studied by numerically exact quantum Monte Carlo methods. A novel stochastic integration over the real-time paths allows for direct computation of nonequilibrium conductance and noise properties. We have examined the low-temperature scaling of the conductance in the crossover region between a very weak and an almost insulating barrier.Comment: REVTex, 4 pages, 2 uuencoded figures (submitted to Phys. Rev. Lett.

    Thermodynamic phase diagram and phase competition in BaFe2(As1-xPx)2 studied by thermal expansion

    Full text link
    High-resolution thermal-expansion and specific-heat measurements were performed on single crystalline BaFe2(As1-xPx)2 (0 < x < 0.33, x = 1). The observation of clear anomalies allows to establish the thermodynamic phase diagram which features a small coexistence region of SDW and superconductivity with a steep rise of Tc on the underdoped side. Samples that undergo the tetragonal-orthorhombic structural transition are detwinned in situ, and the response of the sample length to the magneto-structural and superconducting transitions is studied for all three crystallographic directions. It is shown that a reduction of the magnetic order by superconductivity is reflected in all lattice parameters. On the overdoped side, superconductivity affects the lattice parameters in much the same way as the SDW on the underdoped side, suggesting an intimate relation between the two types of order. Moreover, the uniaxial pressure derivatives of Tc are calculated using the Ehrenfest relation and are found to be large and anisotropic. A correspondence between substitution and uniaxial pressure is established, i.e., uniaxial pressure along the b-axis (c-axis) corresponds to a decrease (increase) of the P content. By studying the electronic contribution to the thermal expansion we find evidence for a maximum of the electronic density of states at optimal doping

    Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers

    Get PDF
    Reports of an advantage of bilingualism on brain structure in young adult participants are inconsistent. Abutalebi et al. (2012) reported more efficient monitoring of conflict during the Flanker task in young bilinguals compared to young monolingual speakers. The present study compared young adult (mean age = 24) Cantonese-English bilinguals in Hong Kong and young adult monolingual speakers. We expected (a) differences in metabolites in neural tissue to result from bilingual experience, as measured by 1H-MRS at 3T, (b) correlations between metabolic levels and Flanker conflict and interference effects (c) different associations in bilingual and monolingual speakers. We found evidence of metabolic differences in the ACC due to bilingualism, specifically in metabolites Cho, Cr, Glx and NAA. However, we found no significant correlations between metabolic levels and conflict and interference effects and no significant evidence of differential relationships between bilingual and monolingual speakers. Furthermore, we found no evidence of significant differences in the mean size of conflict and interference effects between groups i.e. no bilingual advantage. Lower levels of Cho, Cr, Glx and NAA in bilingual adults compared to monolingual adults suggest that the brains of bilinguals develop greater adaptive control during conflict monitoring because of their extensive bilingual experience

    General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Get PDF
    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strength of the shock increases the speed of the fluid to relativistic values and for some critical ones is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong one. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.Comment: To appear in Journal of Physics:Conference Series:"XXIX Spanish Relativity Meeting (ERE 2006): Einstein's Legacy: From the Theoretical Paradise to Astrophysical Observations

    Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides

    Get PDF
    Motivated by the triumph and limitation of graphene for electronic applications, atomically thin layers of group VI transition metal dichalcogenides are attracting extensive interest as a class of graphene-like semiconductors with a desired band-gap in the visible frequency range. The monolayers feature a valence band spin splitting with opposite sign in the two valleys located at corners of 1st Brillouin zone. This spin-valley coupling, particularly pronounced in tungsten dichalcogenides, can benefit potential spintronics and valleytronics with the important consequences of spin-valley interplay and the suppression of spin and valley relaxations. Here we report the first optical studies of WS2 and WSe2 monolayers and multilayers. The efficiency of second harmonic generation shows a dramatic even-odd oscillation with the number of layers, consistent with the presence (absence) of inversion symmetry in even-layer (odd-layer). Photoluminescence (PL) measurements show the crossover from an indirect band gap semiconductor at mutilayers to a direct-gap one at monolayers. The PL spectra and first-principle calculations consistently reveal a spin-valley coupling of 0.4 eV which suppresses interlayer hopping and manifests as a thickness independent splitting pattern at valence band edge near K points. This giant spin-valley coupling, together with the valley dependent physical properties, may lead to rich possibilities for manipulating spin and valley degrees of freedom in these atomically thin 2D materials

    Optoelectronics with electrically tunable PN diodes in a monolayer dichalcogenide

    Full text link
    One of the most fundamental devices for electronics and optoelectronics is the PN junction, which provides the functional element of diodes, bipolar transistors, photodetectors, LEDs, and solar cells, among many other devices. In conventional PN junctions, the adjacent p- and n-type regions of a semiconductor are formed by chemical doping. Materials with ambipolar conductance, however, allow for PN junctions to be configured and modified by electrostatic gating. This electrical control enables a single device to have multiple functionalities. Here we report ambipolar monolayer WSe2 devices in which two local gates are used to define a PN junction exclusively within the sheet of WSe2. With these electrically tunable PN junctions, we demonstrate both PN and NP diodes with ideality factors better than 2. Under excitation with light, the diodes show photodetection responsivity of 210 mA/W and photovoltaic power generation with a peak external quantum efficiency of 0.2%, promising numbers for a nearly transparent monolayer sheet in a lateral device geometry. Finally, we demonstrate a light-emitting diode based on monolayer WSe2. These devices provide a fundamental building block for ubiquitous, ultra-thin, flexible, and nearly transparent optoelectronic and electronic applications based on ambipolar dichalcogenide materials.Comment: 14 pages, 4 figure
    corecore