485 research outputs found

    A Ray-Tracing Model of the Vela Pulsar

    Get PDF
    In the relativistic plasma surrounding a pulsar, a subluminal ordinary-mode electromagnetic wave will propagate along a magnetic field line. After some distance, it can break free of the field line and escape the magnetosphere to reach an observer. We describe a simple model of pulsar radio emission based on this scenario and find that applying this model to the case of the Vela pulsar reproduces qualitative characteristics of the observed Vela pulse profile.Comment: 23 pages, 9 figures, accepted for publication in Ap

    Discovery of Substructure in the Scatter-Broadened Image of Sgr A*

    Full text link
    We have detected substructure within the smooth scattering disk of the celebrated Galactic Center radio source Sagittarius A* (SgrA*). We observed this structure at 1.3 cm wavelength with the Very Long Baseline Array together with the Green Bank Telescope, on baselines of up to 3000 km, long enough to completely resolve the average scattering disk. Such structure is predicted theoretically, as a consequence of refraction by large-scale plasma fluctuations in the interstellar medium. Along with the much-studied θdλ2\theta_\mathrm{d}\propto \lambda^2 scaling of angular broadening θd\theta_\mathrm{d} with observing wavelength λ\lambda, our observations indicate that the spectrum of interstellar turbulence is shallow, with an inner scale larger than 300 km. The substructure is consistent with an intrinsic size of about 1 mas at 1.3 cm wavelength, as inferred from deconvolution of the average scattering. Further observations of the substructure can set stronger constraints on the properties of scattering material and on the intrinsic size of SgrA*. These constraints will guide understanding of effects of scatter-broadening and emission physics of the black hole, in images with the Event Horizon Telescope at millimeter wavelengths.Comment: 5 pages, 5 figures, accepted by Astrophysical Journal Letters; minor corrections to the text and figures are introduce

    Effects of Intermittent Emission: Noise Inventory for Scintillating Pulsar B0834+06

    Full text link
    We compare signal and noise for observations of the scintillating pulsar B0834+06, using very-long baseline interferometry and a single-dish spectrometer. Comparisons between instruments and with models suggest that amplitude variations of the pulsar strongly affect the amount and distribution of self-noise. We show that noise follows a quadratic polynomial with flux density, in spectral observations. Constant coefficients, indicative of background noise, agree well with expectation; whereas second-order coefficients, indicative of self-noise, are about 3 times values expected for a pulsar with constant on-pulse flux density. We show that variations in flux density during the 10-sec integration account for the discrepancy. In the secondary spectrum, about 97% of spectral power lies within the pulsar's typical scintillation bandwidth and timescale; an extended scintillation arc contains about 3%. For a pulsar with constant on-pulse flux density, noise in the dynamic spectrum will appear as a uniformly-distributed background in the secondary spectrum. We find that this uniform noise background contains 95% of noise in the dynamic spectrum for interferometric observations; but only 35% of noise in the dynamic spectrum for single-dish observations. Receiver and sky dominate noise for our interferometric observations, whereas self-noise dominates for single-dish. We suggest that intermittent emission by the pulsar, on timescales < 300 microseconds, concentrates self-noise near the origin in the secondary spectrum, by correlating noise over the dynamic spectrum. We suggest that intermittency sets fundamental limits on pulsar astrometry or timing. Accounting of noise may provide means for detection of intermittent sources, when effects of propagation are unknown or impractical to invert.Comment: 38 pages, 10 figure

    Finding agriculture among biodiversity: metadata in practice

    Get PDF
    The breadth of biodiversity literature available through the Biodiversity Heritage Library (BHL) is potentially of great use to agricultural research. It provides access to literature drawn from across the world, and its archives document the Earth as it was one hundred years ago and more. However, this strength of BHL is also its weakness: the breadth of coverage of BHL can complicate finding relevant literature. In this short paper, we will explore the practical issues arising from attempting to filter out relevant legacy literature to support agricultural research

    Interstellar Scintillation of PSR J0437-4715

    Full text link
    We studied the turbulence spectrum of the local interstellar plasma in the direction of PSR J0437-4715, on the basis of our observations and those reported earlier by others. We combine these data to form a structure function for the variations of phase along the line of sight to the pulsar. For observations that did not report them, we infer modulation indices from a theoretical model. We find that all of the observations fit a power-law spectrum of turbulence with index n=3.46+/-0.20. We suggest that differences among reported values for scintillation bandwidth and timescale for this pulsar arise from differences in observing parameters. We suggest that refractive effects dominate for this line of sight, with refraction angle about twice the diffraction angle at 330 MHz observing frequency. We suggest that the scattering of this pulsar lies in a layer of enhanced turbulence, about 10 pc from the Sun. We propose that the flux variations of the extragalactic source PKS 0405-385 arise in the same scattering layer.Comment: 9 pages, 3 figures, 2 table
    corecore