27 research outputs found

    The two colors of MgB2

    Full text link
    We present the anisotropic optical conductivity of MgB2_{2} between 0.1 and 3.7 eV at room temperature obtained on single crystals of different purity by the spectroscopic ellipsometry and reflectance measurements. The bare (unscreened) plasma frequency ωp\omega_{p} is almost isotropic and equal to 6.3 eV, which contrasts some earlier reports of a very small value of ωp\omega_{p}. The data suggests that the σ\sigma-bands are characterized by a stronger electron-phonon coupling λtr\lambda_ {tr} but smaller impurity scattering γimp\gamma_{imp}, compared to the π\pi-bands. The optical response along the boron planes is marked by an intense interband transition at 2.6 eV, due to which the reflectivity plasma edges along the a- and c-axes are shifted with respect to each other. As a result, the sample spectacularly changes color from a blueish-silver to the yellow as the polarization is rotated from the in-plane direction towards the c-axis. The optical spectra are in good agreement with the published {\it ab initio} calculations. The remaining discrepancies can be explained by the relative shift of σ\sigma-bands and π\pi-bands by about 0.2 eV compared to the theoretical band structure, in agreement with the de Haas-van Alphen experiments. The widths of the Drude and the interband peaks are both very sensitive to the sample purity.Comment: 11 pages, 13 figure

    Optical study of archetypical valence-fluctuating Eu-systems

    Full text link
    We have investigated the optical conductivity of the prominent valence fluctuating compounds EuIr2Si2 and EuNi2P2 in the infrared energy range to get new insights into the electronic properties of valence fluctuating systems. For both compounds we observe upon cooling the formation of a renormalized Drude response, a partial suppression of the optical conductivity below 100 meV and the appearance of a mid-infrared peak at 0.15 eV for EuIr2Si2 and at 0.13 eV for EuNi2P2. Most remarkably, our results show a strong similarity with the optical spectra reported for many Ce- or Yb-based heavy fermion metals and intermediate valence systems, although the phase diagrams and the temperature dependence of the valence differ strongly between Eu- and Ce-/Yb-systems. This suggests that the hybridization between 4f- and conduction electrons, which is responsible for the properties of Ce- and Yb-systems, plays an important role in valence fluctuating Eu-systems

    Optical spectra of the heavy fermion uniaxial ferromagnet UGe2_2

    Full text link
    We report a detailed study of UGe2_{2} single crystals using infrared reflectivity and spectroscopic ellipsometry. The optical conductivity suggests the presence of a low frequency interband transition and a narrow free-carrier response with strong frequency dependence of the scattering rate and effective mass. We observe sharp changes in the low frequency mass and scattering rate below the upper ferromagnetic transition TC=53KT_C = 53 K. The characteristic changes are exhibited most strongly at an energy scale of around 12 meV (100 cm−1^{-1}). They recover their unrenormalized value above TCT_C and for ω>\omega > 40 meV. In contrast no sign of an anomaly is seen at the lower transition temperature of unknown nature Tx∼T_x \sim 30 K, observed in transport and thermodynamic experiments. In the ferromagnetic state we find signatures of a strong coupling to the longitudinal magnetic excitations that have been proposed to mediate unconventional superconductivity in this compound

    Optical evidence for heavy charge carriers in FeGe

    Full text link
    The optical spectrum of the cubic helimagnetic metal FeGe has been investigated in the frequency range from 0.01 - 3.1 eV for different temperatures from 30 K to 296 K. The optical conductivity shows the evolution of a low energy (0.22 eV) interband transition and the development of a narrow free carrier response with a strong energy and temperature dependence. The frequency dependent effective mass and scattering rate derived from the optical data indicate the formation of dressed quasi-particles with a mass renormalization factor of 12. Similar to FeSi the spectral weight in FeGe is not recovered over a broad frequency range, an effect usually attributed to the influence of the on-site Coulomb interaction.Comment: 5 pages, 5 figure

    Anisotropic optical conductivity of the putative Kondo insulator CeRu4_4Sn6_6

    Full text link
    Kondo insulators and in particular their non-cubic representatives have remained poorly understood. Here we report on the development of an anisotropic energy pseudogap in the tetragonal compound CeRu4_4Sn6_6 employing optical reflectivity measurements in broad frequency and temperature ranges, and local density approximation plus dynamical mean field theory calculations. The calculations provide evidence for a Kondo insulator-like response within the a−aa-a plane and a more metallic response along the c axis and qualitatively reproduce the experimental observations, helping to identify their origin

    Optical conductivity and superconductivity in LaSb2_2

    Get PDF
    We have measured the resistivity, optical conductivity, and magnetic susceptibility of LaSb2_2 to search for clues as to the cause of the extraordinarily large linear magnetoresistance and to explore the properties of the superconducting state. We find no evidence in the optical conductivity for the formation of a charge density wave state above 20 K despite the highly layered crystal structure. In addition, only small changes to the optical reflectivity with magnetic field are observed indicating that the MR is due to scattering rate, not charge density, variations with field. Although a superconducting ground state was previously reported below a critical temperature of 0.4 K, we observe, at ambient pressure, a fragile superconducting transition with an onset at 2.5 K. In crystalline samples, we find a high degree of variability with a minority of samples displaying a full Meissner fraction below 0.2 K and fluctuations apparent up to 2.5 K. The application of pressure stabilizes the superconducting transition and reduces the anisotropy of the superconducting phase.Comment: 4 pages with 4 figure

    Electronic correlations in the iron pnictides

    Full text link
    In correlated metals derived from Mott insulators, the motion of an electron is impeded by Coulomb repulsion due to other electrons. This phenomenon causes a substantial reduction in the electron's kinetic energy leading to remarkable experimental manifestations in optical spectroscopy. The high-Tc superconducting cuprates are perhaps the most studied examples of such correlated metals. The occurrence of high-Tc superconductivity in the iron pnictides puts a spotlight on the relevance of correlation effects in these materials. Here we present an infrared and optical study on single crystals of the iron pnictide superconductor LaFePO. We find clear evidence of electronic correlations in metallic LaFePO with the kinetic energy of the electrons reduced to half of that predicted by band theory of nearly free electrons. Hallmarks of strong electronic many-body effects reported here are important because the iron pnictides expose a new pathway towards a correlated electron state that does not explicitly involve the Mott transition.Comment: 10 page
    corecore