414 research outputs found

    Variation in viscous fingering pattern morphology due to surfactant-mediated interfacial recognition events

    Get PDF
    The study of the formation of finger-like patterns during displacement of a viscous fluid by a less viscous one is of technological importance. The morphology of the viscous-finger patterns generated is a function of many parameters such as the flow rate, difference in viscosities of the two fluids and the interfacial tension. We demonstrate herein that the morphology of patterns formed during viscous fingering in a Hele-Shaw cell during displacement of paraffin oil by aqueous solutions of the surfactant sodium dodecyl sulphate (SDS), is extremely sensitive to interfacial tension variation brought about by complexation of divalent cations with the surfactant SDS. The variation in morphology of the patterns formed has been quantified by measuring the fractal dimensions of structures formed in a radial Hele-Shaw cell as well as the average finger width in a linear Hele-Shaw cell. This technique shows promise for studying other interfacial phenomena in chemistry such as biorecognition as well as dynamic processes occurring at interfaces

    Radio Frequency Effects on the Clock Networks of Digital Circuits

    Get PDF
    Radio frequency interference (RFI) can have adverse effects on commercial electronics. Current properties of high performance integrated circuits (ICs), such as very small feature sizes, high clock frequencies, and reduced voltage levels, increase the susceptibility of these circuits to RFI, causing them to be more prone to smaller interference levels. Also, recent developments of mobile devices and wireless networks create a hostile electromagnetic environment for ICs. Therefore, it is important to measure the susceptibility of ICs to RFI. In this study, we investigate the susceptibility levels to RFI of the clock network of a basic digital building block. Our experimental setup is designed to couple a pulse modulated RF signal using the pin direct injection method. The device under test is an 8-bit ripple counter, designed and fabricated using AMI 0.5 μm process technology. Our experiments showed that relatively low levels of RFI (e.g., 16.8 dBm with carrier frequency of 1 GHz) could adversely affect the normal functioning of the device under test

    One-dimensional metal-organic framework photonic crystals used as platforms for vapor sorption.

    Get PDF
    We present the fabrication of one-dimensional photonic crystals (Bragg stacks) based on a microporous metal–organic framework material and mesoporous titanium dioxide. The Bragg stack heterostructures were obtained using two complementary synthesis approaches utilizing the bottom-up assembly of heterogeneous, i.e. two-component photonic crystal multilayer structures. Zeolitic imidazolate framework ZIF-8 and mesoporous titanium dioxide were chosen as functional components with different refractive indices. While ZIF-8 is intended to impart molecular selectivity, mesoporous TiO2 is used to ensure high refractive index contrast and to guarantee molecular diffusion within the Bragg stack. The combination of micro- and mesoporosity within one scaffold endows the 1D-MOF PC with characteristic adsorption properties upon exposure to various organic vapors. In this context, the sorption behavior of the photonic material was studied as a function of partial pressure of organic vapors. The results show that the multilayered photonic heterostructures are sensitive and selective towards a series of chemically similar solvent vapors. It is thus anticipated that the concept of multilayer heterogeneous photonic structures will provide a versatile platform for future selective, label-free optical sensors

    Economic liberalization and the antecedents of top management teams: evidence from Turkish 'big' business

    Get PDF
    There has been an increased interest in the last two decades in top management teams (TMTs) of business firms. Much of the research, however, has been US-based and concerned primarily with TMT effects on organizational outcomes. The present study aims to expand this literature by examining the antecedents of top team composition in the context of macro-level economic change in a late-industrializing country. The post-1980 trade and market reforms in Turkey provided the empirical setting. Drawing upon the literatures on TMT and chief executive characteristics together with punctuated equilibrium models of change and institutional theory, the article develops the argument that which firm-level factors affect which attributes of TMT formations varies across the early and late stages of economic liberalization. Results of the empirical investigation of 71 of the largest industrial firms in Turkey broadly supported the hypotheses derived from this premise. In the early stages of economic liberalization the average age and average organizational tenure of TMTs were related to the export orientation of firms, whereas in later stages, firm performance became a major predictor of these team attributes. Educational background characteristics of teams appeared to be under stronger institutional pressures, altering in different ways in the face of macro-level change

    Phytosome-conjugated carvacrol: A novel approach for improving growth performance, intestinal morphology and economics of production in Broiler Chicken

    Get PDF
    Essential oils are plant-derived aromatic volatile oils, and they contain bioactive compounds that have been shown to improve poultry nutrition. However, considering problems associated with the solubility and bioavailability of polyphenolic compounds, the study was planned to find out the effect of the novel feed-grade delivery system, phytosomes for conjugation of plant-derived polyphenolic compound carvacrol on the growth performance of broiler chickens. The experiment was conducted, on 240 broiler chicks for a period of 6 weeks. The chicks were divided into 4 groups having 4 replicates of 15 birds each. The birds in the control group (T0) offered a standard diet as per BIS (2007) specification. Group T1 received a standard diet supplemented with Bacitracin Methylene Disalicylate (BMD) antibiotic at standard dose and group T2 received a standard diet supplemented with carvacrol essential oil @100 mg/kg feed. Group T3 received a standard diet supplemented with phytosome-conjugated carvacrol essential oil (carvacrol @16.6%) @100 mg/kg feed. The performance of all the treatment groups was assessed with respect to the different performance parameters. The supplementation of phytosome-conjugated carvacrol essential oil (carvacrol @16.6%) @ 100 mg/kg feed was found beneficial in terms of growth performance, feed efficiency, and intestinal morphometry. In terms of economics of broiler production, the results revealed that the addition of phytosome- conjugated carvacrol essential oil and carvacrol essential oil in diets was found beneficial in reducing the cost of broiler production, thereby enhancing the margin of profit in broiler production and fetching higher net profit than the control group

    Surface Doping Quantum Dots with Chemically Active Native Ligands: Controlling Valence without Ligand Exchange

    Get PDF
    One remaining challenge in the field of colloidal semiconductor nanocrystal quantum dots is learning to control the degree of functionalization or valence per nanocrystal. Current quantum dot surface modification strategies rely heavily on ligand exchange, which consists of replacing the nanocrystal\u27s native ligands with carboxylate- or amine-terminated thiols, usually added in excess. Removing the nanocrystal\u27s native ligands can cause etching and introduce surface defects, thus affecting the nanocrystal\u27s optical properties. More importantly, ligand exchange methods fail to control the extent of surface modification or number of functional groups introduced per nanocrystal. Here, we report a fundamentally new surface ligand modification or doping approach aimed at controlling the degree of functionalization or valence per nanocrystal while retaining the nanocrystal\u27s original colloidal and photostability. We show that surface-doped quantum dots capped with chemically active native ligands can be prepared directly from a mixture of ligands with similar chain lengths. Specifically, vinyl and azide-terminated carboxylic acid ligands survive the high temperatures needed for nanocrystal synthesis. The ratio between chemically active and inactive-terminated ligands is maintained on the nanocrystal surface, allowing to control the extent of surface modification by straightforward organic reactions. Using a combination of optical and structural characterization tools, including IR and 2D NMR, we show that carboxylates bind in a bidentate chelate fashion, forming a single monolayer of ligands that are perpendicular to the nanocrystal surface. Moreover, we show that mixtures of ligands with similar chain lengths homogeneously distribute themselves on the nanocrystal surface. We expect this new surface doping approach will be widely applicable to other nanocrystal compositions and morphologies, as well as to many specific applications in biology and materials science

    New Insights into the Mechanism of Visible Light Photocatalysis

    Get PDF
    ABSTRACT: In recent years, the area of developing visible-lightactive photocatalysts based on titanium dioxide has been enormously investigated due to its wide range of applications in energy and environment related fields. Various strategies have been designed to efficiently utilize the solar radiation and to enhance the efficiency of photocatalytic processes. Building on the fundamental strategies to improve the visible light activity of TiO2-based photocatalysts, this Perspective aims to give an insight into many contemporary developments in the field of visible-light-active photocatalysis. Various examples of advanced TiO2 composites have been discussed in relation to their visible light induced photoconversion efficiency, dynamics of electron− hole separation, and decomposition of organic and inorganic pollutants, which suggest the critical need for further development of these types of materials for energy conversion and environmental remediation purposes

    Molecular Chemistry to the Fore: New Insights into the Fascinating World of Photoactive Colloidal Semiconductor Nanocrystals

    Get PDF
    Colloidal semiconductor nanocrystals possess unique properties that are unmatched by other chromophores such as organic dyes or transition-metal complexes. These versatile building blocks have generated much scientific interest and found applications in bioimaging, tracking, lighting, lasing, photovoltaics, photocatalysis, thermoelectrics, and spintronics. Despite these advances, important challenges remain, notably how to produce semiconductor nanostructures with predetermined architecture, how to produce metastable semiconductor nanostructures that are hard to isolate by conventional syntheses, and how to control the degree of surface loading or valence per nanocrystal. Molecular chemists are very familiar with these issues and can use their expertise to help solve these challenges. In this Perspective, we present our group\u27s recent work on bottom-up molecular control of nanoscale composition and morphology, low-temperature photochemical routes to semiconductor heterostructures and metastable phases, solar-to-chemical energy conversion with semiconductor-based photocatalysts, and controlled surface modification of colloidal semiconductors that bypasses ligand exchange
    • …
    corecore