200 research outputs found

    Application of fragment-based drug discovery to membrane proteins

    Get PDF
    Membrane proteins are an interesting class due to the variety of cellular functions and their importance as pharmaceutical targets, but they pose significant challenges for fragment-based drug discovery approaches. Here we present the first successful use of biophysical methods to screen for fragment ligands to an integral membrane protein. Using the recently developed Target Immobilized NMR Screening (TINS) approach, we screened 1,200 fragments for binding to the enzyme Disulphide bond forming protein B. Biochemical and biophysical validation of the 8 most potent hits revealed an IC50 range of 7 to 200 uM, which could be categorized as cofactor binding inhibitors or mixed model inhibitors of both cofactor and substrate protein interaction. Our results establish the utility of fragment-based methods in the development of inhibitors of membrane proteins, making a wide variety3of important membrane bound pharmaceutical targets amenable to such an approach. We first tested the immobilization procedure on G protein coupled receptors and ion channels. Furthermore, we used Nanodiscs, an alternative solubilization strategy, to solubilize teh protein without detergents. This resulted in less broad NMR signals, less non-specific binding issues, and identification of the binders from the original screen, proving that the nanodisc solubilization technique is compatible with TINS.Medicinal Chemistr

    Viral Takeover of the Host Ubiquitin System

    Get PDF
    Like the other more well-characterized post-translational modifications (phosphorylation, methylation, acetylation, acylation, etc.), the attachment of the 76 amino acid ubiquitin (Ub) protein to substrates has been shown to govern countless cellular processes. As obligate intracellular parasites, viruses have evolved the capability to commandeer many host processes in order to maximize their own survival, whether it be to increase viral production or to ensure the long-term survival of latently infected host cells. The first evidence that viruses could usurp the Ub system came from the DNA tumor viruses and Adenoviruses, each of which use Ub to dysregulate the host cell cycle (Scheffner et al., 1990; Querido et al., 2001). Today, the list of viruses that utilize Ub includes members from almost every viral class, encompassing both RNA and DNA viruses. Among these, there are examples of Ub usage at every stage of the viral life cycle, involving both ubiquitination and de-ubiquitination. In addition to viruses that merely modify the host Ub system, many of the large DNA viruses encode their own Ub modifying machinery. In this review, we highlight the latest discoveries regarding the myriad ways that viruses utilize Ub to their advantage

    Replacement of soybean cake by Hermetia illucens meal in diets for layers

    Get PDF
    Insects will likely play an important role as protein sources for livestock in the future. Many insect species are able to convert materials not suitable for human nutrition – or even waste – into valuable protein with a favourable amino acid composition for poultry and other livestock. A feeding trial with partly de-fatted meal of dried Hermetia illucens larvae (Hermetia meal) reared on vegetarian by-products of the pasta and convenience food industry was carried out in small groups of Lohmann Selected Leghorn laying hens (four rounds, 10 hens/round). Experimental diets H12 and H24 contained 12 and 24 g/100 g Hermetia meal replacing 50 or 100% of soybean cake used in the control feed, respectively. After three weeks of feeding experimental diets, there were no significant differences between feeding groups with regard to performance (egg production, feed intake). There was a tendency (P=0.06) for lower albumen weight in the H24 group; yolk and shell weights did not differ. No mortality and no sign of health disorders occurred. Plumage as well as wound scores remained stable during the feeding period and did not differ between treatments. Dry matter of faeces increased with increasing proportions of Hermetia meal in the diet, with a significant difference between H24 and the control (P=0.03). An increase of black faecal pads was observed in the H12 and H24 groups. Overall, these results suggest Hermetia meal can be a valuable component of layer diets. However, insect meal production still has to become economically more viable through upscaling production and, especially, legislative issues have to be solved

    The Great Escape: Viral Strategies to Counter BST-2/Tetherin

    Get PDF
    The interferon-induced BST-2 protein has the unique ability to restrict the egress of HIV-1, Kaposi's sarcoma–associated herpesvirus (KSHV), Ebola virus, and other enveloped viruses. The observation that virions remain attached to the surface of BST-2-expressing cells led to the renaming of BST-2 as “tetherin”. However, viral proteins such as HIV-1 Vpu, simian immunodeficiency virus Nef, and KSHV K5 counteract BST-2, thereby allowing mature virions to readily escape from infected cells. Since the anti-viral function of BST-2 was discovered, there has been an explosion of research into several aspects of this intriguing interplay between host and virus. This review focuses on recent work addressing the molecular mechanisms involved in BST-2 restriction of viral egress and the species-specific countermeasures employed by various viruses

    Identification of Cellular Genes Targeted by KSHV-Encoded MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are 19 to 23 nucleotide–long RNAs that post-transcriptionally regulate gene expression. Human cells express several hundred miRNAs which regulate important biological pathways such as development, proliferation, and apoptosis. Recently, 12 miRNA genes have been identified within the genome of Kaposi sarcoma–associated herpesvirus; however, their functions are still unknown. To identify host cellular genes that may be targeted by these novel viral regulators, we performed gene expression profiling in cells stably expressing KSHV-encoded miRNAs. Data analysis revealed a set of 81 genes whose expression was significantly changed in the presence of miRNAs. While the majority of changes were below 2-fold, eight genes were down-regulated between 4- and 20-fold. We confirmed miRNA-dependent regulation for three of these genes and found that protein levels of thrombospondin 1 (THBS1) were decreased >10-fold. THBS1 has previously been reported to be down-regulated in Kaposi sarcoma lesions and has known activity as a strong tumor suppressor and anti-angiogenic factor, exerting its anti-angiogenic effect in part by activating the latent form of TGF-β. We show that reduced THBS1 expression in the presence of viral miRNAs translates into decreased TGF-β activity. These data suggest that KSHV-encoded miRNAs may contribute directly to pathogenesis by down-regulation of THBS1, a major regulator of cell adhesion, migration, and angiogenesis

    Game-theoretic modeling of curtailment rules and network investments with distributed generation

    Get PDF
    Renewable energy has achieved high penetration rates in many areas, leading to curtailment, especially if existing network infrastructure is insufficient and energy generated cannot be exported. In this context, Distribution Network Operators (DNOs) face a significant knowledge gap about how to implement curtailment rules that achieve desired operational objectives, but at the same time minimise disruption and economic losses for renewable generators. In this work, we study the properties of sev

    Neoadjuvant treatment does not influence PD-L1 expression in stage III non-small-cell lung cancer: a retrospective analysis of tumor samples from the trials SAKK 16/96, 16/00, 16/01, and 16/14.

    Get PDF
    The inclusion of immune checkpoint inhibitors (ICIs) in the treatment of operable stage III non-small-cell lung cancer is becoming a new standard. Programmed death-ligand 1 (PD-L1) protein expression on tumor cells has emerged as the most important biomarker for sensitivity to ICIs targeting the programmed cell death protein 1 (PD-1)-PD-L1 axis. Little is known about the impact of neoadjuvant treatment on PD-L1 expression. We assessed PD-L1 expression by immunohistochemistry (Ventana SP263 assay) on tumor cells in treatment-naive diagnostic tumor samples and matched lung resections from patients with stage III non-small-cell lung cancer included in the Swiss Group for Clinical Cancer Research (SAKK) trials 16/96, 16/00, 16/01, and 16/14. All patients received neoadjuvant chemotherapy (CT) with cisplatin/docetaxel, either as single modality (CT), with sequential radiotherapy [chemoradiation therapy (CRT)] or with the PD-L1 inhibitor durvalumab (CT + ICI). Overall, 132 paired tumor samples were analyzed from patients with neoadjuvant CT (n = 69), CRT (n = 33) and CT + ICI (n = 30). For CT and CRT, PD-L1 expression before and after neoadjuvant treatment did not differ significantly (Wilcoxon test, P = 0.94). Likewise, no statistically significant difference was observed between CT and CRT for PD-L1 expression after neoadjuvant treatment (P = 0.97). For CT + ICI, PD-L1 expression before and after neoadjuvant treatment also did not differ significantly (Wilcoxon test, P > 0.99). Event-free survival and overall survival for patients with downregulation or upregulation of PD-L1 expression after neoadjuvant treatment were similar. In our cohort of patients neoadjuvant treatment did not influence PD-L1 expression, irrespective of the specific neoadjuvant treatment protocol. Dynamic change of PD-L1 expression did not correlate with event-free survival or overall survival

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Targeting RET in Patients With RET-Rearranged Lung Cancers: Results From the Global, Multicenter RET Registry.

    Get PDF
    Purpose In addition to prospective trials for non-small-cell lung cancers (NSCLCs) that are driven by less common genomic alterations, registries provide complementary information on patient response to targeted therapies. Here, we present the results of an international registry of patients with RET-rearranged NSCLCs, providing the largest data set, to our knowledge, on outcomes of RET-directed therapy thus far. Methods A global, multicenter network of thoracic oncologists identified patients with pathologically confirmed NSCLC that harbored a RET rearrangement. Molecular profiling was performed locally by reverse transcriptase polymerase chain reaction, fluorescence in situ hybridization, or next-generation sequencing. Anonymized data-clinical, pathologic, and molecular features-were collected centrally and analyzed by an independent statistician. Best response to RET tyrosine kinase inhibition administered outside of a clinical trial was determined by RECIST v1.1. Results By April 2016, 165 patients with RET-rearranged NSCLC from 29 centers across Europe, Asia, and the United States were accrued. Median age was 61 years (range, 29 to 89 years). The majority of patients were never smokers (63%) with lung adenocarcinomas (98%) and advanced disease (91%). The most frequent rearrangement was KIF5B-RET (72%). Of those patients, 53 received one or more RET tyrosine kinase inhibitors in sequence: cabozantinib (21 patients), vandetanib (11 patients), sunitinib (10 patients), sorafenib (two patients), alectinib (two patients), lenvatinib (two patients), nintedanib (two patients), ponatinib (two patients), and regorafenib (one patient). The rate of any complete or partial response to cabozantinib, vandetanib, and sunitinib was 37%, 18%, and 22%, respectively. Further responses were observed with lenvantinib and nintedanib. Median progression-free survival was 2.3 months (95% CI, 1.6 to 5.0 months), and median overall survival was 6.8 months (95% CI, 3.9 to 14.3 months). Conclusion Available multikinase inhibitors had limited activity in patients with RET-rearranged NSCLC in this retrospective study. Further investigation of the biology of RET-rearranged lung cancers and identification of new targeted therapeutics will be required to improve outcomes for these patients
    corecore