9,423 research outputs found

    Soil Erosion Measurement Techniques and Field Experiments

    Get PDF

    Evaluating the effects of sediment transport on pipe flow resistance

    Get PDF
    In this paper, the applicability of a theoretical flow resistance law to sediment-laden flow in pipes is tested. At first, the incomplete self-similarity (ISS) theory is applied to deduce the velocity profile and the corresponding flow resistance law. Then the available database of measurements carried out by clear water and sediment-laden flows with sediments having a quasi-uniform sediment size and three different values of the mean particle diameter Dm (0.88 mm, 0.41 mm and 0.30 mm) are used to calibrate the Γparameter of the power-velocity profile). The fitting of the measured local velocity to the power distribution demonstrates that (i) for clear flow the exponent δ) can be estimated by the equation of Castaing et al. and (ii) for the sediment-laden flows δ is related to the diameter Dm. A relationship for estimating the parameter Гv obtained by the power-velocity profile) and that Гf of the flow resistance law) is theoretically deduced. The relationship between the parameter Гv, the head loss per unit length and the pipe flow Froude number is also obtained by the available sediment-laden pipe flow data. Finally, the procedure to estimate the Darcy–Weisbach friction factor is tested by the available measurements

    Effects of biochar addition on rill flow resistance

    Get PDF
    The development of rills on a hillslope whose soil is amended by biochar remains a topic to be developed. A theoretical rill flow resistance equation, obtained by the integration of a power velocity distribution, was assessed using available measurements at plot scale with a biochar added soil. The biochar was incorporated and mixed with the arable soil using a biochar content BC of 6 and 12 kg m 122. The developed analysis demonstrated that an accurate estimate of the velocity profile parameter \u413v can be obtained by the proposed power equation using an exponent e of the Reynolds number which decreases for increasing BC values. This result pointed out that the increase of bio-char content dumps flow turbulence. The agreement between the measured friction factor values and those calculated by the proposed flow resistance equation, with \u413v values estimated by the power equation calibrated on the available measurements, is characterized by errors which are al-ways less than or equal to \ub110% and less than or equal to \ub13% for 75.0% of cases. In conclusion, the available measurements and the developed analysis allowed for (i) the calibration of the relationship between \u413v, the bed slope, the flow Froude number, and the Reynolds number, (ii) the assessment of the influence of biochar content on flow resistance and, (iii) stating that the theoretical flow resistance equation gives an accurate estimate of the Darcy\u2013Weisbach friction factor for rill flows on biochar added soils

    Detection of delta Scuti-like pulsation in H254, a pre-main sequence F-type star in IC 348

    Full text link
    We present time series observations of intermediate mass PMS stars belonging to the young star cluster IC 348. The new data reveal that a young member of the cluster, H254, undergoes periodic light variations with delta Scuti-like characteristics. This occurrence provides an unambiguous evidence confirming the prediction that intermediate-mass pre-main sequence (PMS) stars should experience this transient instability during their approach to the main-sequence. On the basis of the measured frequency f=7.406 c/d, we are able to constrain the intrinsic stellar parameters of H254 by means of linear, non adiabatic, radial pulsation models. The range of the resulting luminosity and effective temperature permitted by the models is narrower than the observational values. In particular, the pulsation analysis allows to derive an independent estimate of the distance to IC 348 of about 320 pc. Further observations could either confirm the monoperiodic nature of H254 or reveal the presence of other frequencies.Comment: 7 pages, including 7 postscript figures, accepted for publication on A&

    A New Model for Solving Hydrological Connectivity Inside Soils by Fast Field Cycling NMR Relaxometry

    Get PDF
    In this paper, a new quantitative approach for estimating the structural and functional connectivity inside soil by Fast Field Cycling (FFC) NMR relaxometry is presented, tested by measurements carried out in three samples with different texture characteristics. Measurements by FFC NMR relaxometry have been carried out using water-suspended samples and Proton Larmor frequencies (νL) ranging in the 0.015–35 MHz interval. Two non-degraded soil samples, with different textural characteristics, and a degraded soil collected in a badland area, were analyzed. For a given soil and any applied Proton Larmor frequency, the distribution of the longitudinal relaxation times, T1, (i.e., relaxogram) measured by FFC NMR has been integrated, and the resulting S-shaped curve (i.e., relaxogram integration curve) was represented, for the first time, by Gumbel’s diagram. This new representation of the relaxogram integration curve, transforming the S-shaped curve into a straight line, allowed for distinguishing three linear components, corresponding to three different relaxation time ranges, characterized by three different slopes. Two points, identified by the abrupt slope changes of the relaxogram integration curve plotted in Gumbel’s diagram, are used to identify two characteristic values of relaxation time, T1A and T1B, which define three well-known pore size classes (T1 < T1A micro-pores, T1A < T1 < T1B meso-pores, and T1 > T1B macro-pores). The relaxogram integration curve allowed for calculating the non-exceeding empirical cumulative frequency, F(T1), corresponding to the characteristic T1A and T1B values. The analysis demonstrated that the relaxogram can be used to determine the pore-size ranges of each investigated sample. Finally, using the slope values of the three components of the relaxogram integration curve, a new definition of the Structural Connectivity Index, SCI, and Functional Connectivity Index, FCI, was proposed

    Flow resistance of flexible vegetation in real-scale drainage channels

    Get PDF
    The definition of simple and accurate methods to estimate flow resistance in vegetated channels is still a challenging issue in soil bioengineering practices and programming riparian vegetation management to control channel conveyance capacity, sediment deposition, and flooding propensity. In this paper, measurements collected by Errico et al. (2018, 2019) in drainage channels colonized by common reed (Phragmites australis) were used to study the effect of flexible vegetation and its management in flow resistance estimate. At first, a theoretical flow resistance equation, obtained applying dimensional analysis and incomplete self-similarity condition for the velocity distribution of an open channel flow, was briefly summarized. Then, this flow resistance equation was calibrated and tested by open-field hydraulic experiments carried out by Errico et al. (2018, 2019) at the real scale of existing vegetated drainage channels. In particular, the Gamma function of the power velocity profile was empirically related to the slope energy and the flow Froude number by using the available measurements. Taking into account the hydrological regime of the flow in the investigated channels, the original data set was divided into two sub-data sets (calibrating and testing data set) exploring the same range of measured discharges. The calibration and testing of the flow resistance equation were carried out without distinguishing measurements corresponding to different vegetation conditions (full-vegetated, half-vegetated, non-vegetated, central vegetation cut, extensive vegetation cut). The analysis demonstrated that the theoretical flow resistance equation allows an accurate estimate of the Darcy-Weisbach friction factor which is characterized by errors that are always less than 10% and less than or equal to 5% for 90.9% of the investigated cases. The finding of this study also allowed to evaluate the effects of different vegetation management scenarios on flow resistance

    El modelo didáctico de la formación de un cuadro químico del mundo en los estudiantes : una vía para el cambio conceptual

    Get PDF
    In this paper we develop a general definition of the study of Chemistry that responds to the need to form in the students a chemical picture of the world in accordance with the didactic model developed by the authors to systematize the contents in Chemistry teaching. The concept of chemical reaction is defined in a general way, pursuing the central aim of the didactic idea, and also in an operational way, in search of a practica1 guide to study the chemical bond. The concepts of bond, bonding energy, and others are given a systematic treatment within these ideas

    Evaluating the effects of stream power on rill flow resistance

    Get PDF
    Limited information is currently available on how sediment transport affects rill flow resistance and the influence of hydraulic variables, as stream power, on sediment transport capacity for rill flows. In this paper, the available measurements of hydraulic variables (flow depth, channel slope, mean flow velocity, Reynolds number, Froude number, and Darcy–Weisbach friction factor) carried out by Ban et al. (Measurement of rill and ephemeral gully flow velocities and their model expression affected by flow rate and slope gradient. Journal of Hydrology, 589, 125172) and Ban (Measurements and estimation of flow velocity in mobile bed rills. International Journal of Sediment Research, 38(1), 97–104) for fixed and mobile bed rills are used to test the applicability of a theoretically deduced rill flow resistance equation based on a power-velocity profile. The results allowed for stating that (i) the theoretical flow resistance approach can predict Darcy–Weisbach friction factor for flows over fixed and mobile beds, (ii) the stream power, dependent on flow discharge and slope, determines different flow behaviour, and (iii) the data are supportive of the slope independence hypothesis of rill velocity, for the mobile bed condition, only for the highest investigated discharge values (greater than 0.133 L s−1)

    Rill and Interrill Soil Loss Estimations Using the USLE-MB Equation at the Sparacia Experimental Site (South Italy)

    Get PDF
    A reliable prediction of event soil loss at the plot scale can be obtained by Universal Soil Loss Equation (USLE)-type models. For the Sparacia site (South Italy), the USLE-MB model was recently developed, in which the effect of the erosive agent is modeled using the rainfall erosivity index of the USLE by a power b1 > 1 of the runoff coefficient QR. In this investigation, the model is parameterized separately using plot data collected for rill and interrill events that occurred in the Sparacia experimental area. The values b1 = 1.406 and b1 = 1.012 were obtained for the interrill and rill databases, respectively, which revealed a different effect of the runoff coefficient on soil loss due to the two erosive processes. Different relationships expressive of topographic factors were also deduced. The USLE-MB estimation performance significantly improved when operating the distinction between the two databases compared with the model parameterized on the complete database. The model was particularly reliable in estimating the highest event soil loss values, which were associated with the occurrence of rills. Finally, the proposed parameterization procedure lends itself to being tested in the framework of empirical soil loss modeling
    • …
    corecore