133 research outputs found

    Metabolism during hypodynamia

    Get PDF
    Physical immobilization, inaction due to space travel, a sedentary occupation, or bed confinement due to a chronic illness elicit similar alternations in the metabolism of man and animals (rat, rabbit, dog, mouse). After a preliminary period of weight loss, there is eventually weight gain due to increased lipid storage. Protein catabolism is enhanced and anabolism depressed, with elevated urinary excretion of amino acids, creatine, and ammonia. Glycogen stores are depleted and glyconeogenesis is accelerated. Polyuria develops with subsequent redistribution of body fluids in which the blood volume of the systemic circulation is decreased and that of pulmonary circulation increased. This results in depressed production of vasopressin by the posterior pituitary which further enhances urinary water and salt loss

    Content of lipids in blood and tissues of animals during hypodynamia

    Get PDF
    Experiments on 97 rats and 50 rabbits were undertaken to study the influence of hypodynamia on the lipid content in the blood, liver, heart, and in the aorta. Reduction of muscular activity contributed to the increase of cholesterol and beta lipoprotein levels in the blood and to accumulation of cholesterol in the liver and the heart. The total lipid content in these tissues decreased. In the aorta the total lipid content increased, while lecithin and cephalin figures went down. The character of biochemical changes in hypodynamia resembles in many ways the lipid metabolism changes in atherosclerosis

    A variational problem on Stiefel manifolds

    Full text link
    In their paper on discrete analogues of some classical systems such as the rigid body and the geodesic flow on an ellipsoid, Moser and Veselov introduced their analysis in the general context of flows on Stiefel manifolds. We consider here a general class of continuous time, quadratic cost, optimal control problems on Stiefel manifolds, which in the extreme dimensions again yield these classical physical geodesic flows. We have already shown that this optimal control setting gives a new symmetric representation of the rigid body flow and in this paper we extend this representation to the geodesic flow on the ellipsoid and the more general Stiefel manifold case. The metric we choose on the Stiefel manifolds is the same as that used in the symmetric representation of the rigid body flow and that used by Moser and Veselov. In the extreme cases of the ellipsoid and the rigid body, the geodesic flows are known to be integrable. We obtain the extremal flows using both variational and optimal control approaches and elucidate the structure of the flows on general Stiefel manifolds.Comment: 30 page

    RHEB1 Expression in Embryonic and Postnatal Mouse

    Full text link
    Ras homolog enriched in brain (RHEB1) is a member within the superfamily of GTP-binding proteins encoded by the RAS oncogenes. RHEB1 is located at the crossroad of several important pathways including the insulin-signaling pathways and thus plays an important role in different physiological processes. To understand better the physiological relevance of RHEB1 protein, the expres-sion pattern of RHEB1 was analyzed in both embryonic (at E3.5–E16.5) and adult (1-month old) mice. RHEB1 immu-nostaining and X-gal staining were used for wild-type and Rheb1 gene trap mutant mice, respectively. These inde-pendent methods revealed similar RHEB1 expression pat-terns during both embryonic and postnatal developments. Ubiquitous uniform RHEB1/β-gal and/or RHEB1 expres-sion was seen in preimplantation embryos at E3.5 and post-implantation embryos up to E12.5. Between stages E13.5 and E16.5, RHEB1 expression levels became complex: In particular, strong expression was identified in neural tis-sues, including the neuroepithelial layer of the mesenceph-alon, telencephalon, and neural tube of CNS and dorsal root ganglia. In addition, strong expression was seen in certain peripheral tissues including heart, intestine, muscle, and urinary bladder. Postnatal mice have broad spatial RHEB1 expression in different regions of the cerebral cortex, sub-cortical regions (including hippocampus), olfactory bulb, medulla oblongata, and cerebellum (particularly in Purkinje cells). Significant RHEB1 expression was also viewed in internal organs including the heart, intestine, urinary blad-der, and muscle. Moreover, adult animals have complex tis-sue- and organ-specific RHEB1 expression patterns with different intensities observed throughout postnatal develop-ment. Its expression level is in general comparable in CNS and other organs of mouse. Thus, the expression pattern of RHEB1 suggests that it likely plays a ubiquitous role in the development of the early embryo with more tissue-specific roles in later development

    An essential bifunctional enzyme in Mycobacterium tuberculosis for itaconate dissimilation and leucine catabolism

    Get PDF
    Mycobacterium tuberculosis (Mtb) is the etiological agent of tuberculosis. One-fourth of the global population is estimated to be infected with Mtb, accounting for ∼1.3 million deaths in 2017. As part of the immune response to Mtb infection, macrophages produce metabolites with the purpose of inhibiting or killing the bacterial cell. Itaconate is an abundant host metabolite thought to be both an antimicrobial agent and a modulator of the host inflammatory response. However, the exact mode of action of itaconate remains unclear. Here, we show that Mtb has an itaconate dissimilation pathway and that the last enzyme in this pathway, Rv2498c, also participates in L-leucine catabolism. Our results from phylogenetic analysis, in vitro enzymatic assays, X-ray crystallography, and in vivo Mtb experiments, identified Mtb Rv2498c as a bifunctional β-hydroxyacyl-CoA lyase and that deletion of the rv2498c gene from the Mtb genome resulted in attenuation in a mouse infection model. Altogether, this report describes an itaconate resistance mechanism in Mtb and an L-leucine catabolic pathway that proceeds via an unprecedented (R)-3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) stereospecific route in nature

    Atomic spectroscopy studies of short-lived isotopes and nuclear isomer separation with the ISOLDE RILIS

    Get PDF
    The Resonance Ionization Laser Ion Source (RILIS) at the ISOLDE on-line isotope separator is based on the selective excitation of atomic transitions by tunable laser radiation. Ion beams of isotopes of 20 elements have been produced using the RILIS setup. Together with the mass separator and a particle detection system it represents a tool for high-sensitive laser spectroscopy of short-lived isotopes. By applying narrow-bandwidth lasers for the RILIS one can study isotope shifts (IS) and hyperfine structure (HFS) of atomic optical transitions. Such measurements are capable of providing data on nuclear charge radii, spins and magnetic moments of exotic nuclides far from stability. Although the Doppler broadening of the optical absorption lines limits the resolution of the technique, the accuracy of the HFS measurements examined in experiments with stable Tl isotopes approaches a value of 100 MHz. Due to the hyperfine splitting of atomic lines the RILIS gives an opportunity to separate nuclear isomers. Isomer selectivity of the RILIS has been used in studies of short-lived Ag, Cu and Pb isotopes

    Level Anticrossing of Impurity States in Semiconductor Nanocrystals

    Get PDF
    The size dependence of the quantized energies of elementary excitations is an essential feature of quantum nanostructures, underlying most of their applications in science and technology. Here we report on a fundamental property of impurity states in semiconductor nanocrystals that appears to have been overlooked—the anticrossing of energy levels exhibiting different size dependencies. We show that this property is inherent to the energy spectra of charge carriers whose spatial motion is simultaneously affected by the Coulomb potential of the impurity ion and the confining potential of the nanocrystal. The coupling of impurity states, which leads to the anticrossing, can be induced by interactions with elementary excitations residing inside the nanocrystal or an external electromagnetic field. We formulate physical conditions that allow a straightforward interpretation of level anticrossings in the nanocrystal energy spectrum and an accurate estimation of the states\u27 coupling strength

    Active Feature-Value Acquisition

    Full text link

    Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate

    Get PDF
    Hen egg-white lysozyme (HEWL) was the first enzyme to have its three-dimensional structure determined by X-ray diffraction techniques(1). A catalytic mechanism, featuring a long-lived oxo-carbenium-ion intermediate, was proposed on the basis of model-building studies(2). The `Phillips' mechanism is widely held as the paradigm for the catalytic mechanism of beta -glycosidases that cleave glycosidic linkages with net retention of configuration of the anomeric centre. Studies with other retaining beta -glycosidases, however, provide strong evidence pointing to a common mechanism for these enzymes that involves a covalent glycosyl-enzyme intermediate, as previously postulated(3). Here we show, in three different cases using electrospray ionization mass spectrometry, a catalytically competent covalent glycosyl-enzyme intermediate during the catalytic cycle of HEWL. We also show the three-dimensional structure of this intermediate as determined by Xray diffraction. We formulate a general catalytic mechanism for all retaining beta -glycosidases that includes substrate distortion, formation of a covalent intermediate, and the electrophilic migration of C1 along the reaction coordinate

    Conductivity of underdoped YBa2Cu3O7-d : evidence for incoherent pair correlations in the pseudogap regime

    Full text link
    Conductivity due to superconducting fluctuations studied in optimally doped YBa2Cu3O7-d films displays a stronger decay law in temperature than explainable by theory. A formula is proposed, which fits the data very well with two superconductive parameters, Tc and the coherence length ksi_c0, and an energy scale Delta*. This is also valid in underdoped materials and enables to describe the conductivity up to 300 K with a single-particle excitations channel in parallel with a channel whose contribution is controlled by ksi_c0, Tc and Delta*. This allows to address the nature of the pseudogap in favour of incoherent pairing.Comment: 14 pages, 4 figures, 1 tabl
    • …
    corecore