31 research outputs found
Effect of high temperature on the reproductive development of chickpea genotypes under controlled environments
High temperature during the reproductive stage in chickpea (Cicer arietinum L.) is a major cause of yield loss. The objective of this research was to determine if that variation can be explained by differences in anther and pollen development under heat stress. Therefore the effect of high temperature during the pre- and post-anthesis periods on pollen viability, pollen germination in a medium, pollen germination on the stigma, pollen tube growth and pod set in a heat tolerant (ICCV 2 92944) and a heat sensitive (ICC 5912) genotype was studied. The plants were evaluated under heat stress and non-heat stress conditions in controlled environments. High temperature stress (29/16˚C to 40/25˚C) was gradually applied at flowering to study pollen viability and stigma receptivity including flower production, pod set and seed number. This was compared with a non-stress treatment (27/16˚C). The high temperatures reduced pod set by reducing pollen viability and pollen production per flower. The ICCV 92944 pollen was viable at 35/20˚C (41% fertile) and at 40/25˚C (13% fertile), while ICC 5912 pollen was completely sterile at 35/20˚C with no in vitro germination and no germination on the stigma. However, the stigma of ICC 5912 remained receptive at 35/20˚C and non-stressed pollen (27/16˚C) germinated on it during reciprocal crossing. These data indicate that pollen grains were more sensitive to high temperature than the stigma in chickpea. High temperature also reduced pollen production per flower, % pollen germination, pod set and seed number
Field response of chickpea (Cicer arietinum L.) to high temperature
High temperature is an important factor affecting chickpea growth, development and grain yield. Understanding the plant response to high temperature is a key strategy in breeding for heat tolerance in chickpea (Cicer arietinum L.). This study assessed genetic variability for heat tolerance in chickpea and identified sources of heat tolerance that could be used for crop improvement. One hundred and sixty-seven genotypes were grown in two environments (heat stressed/late sown and non-stressed/optimal sowing time) in 2 years (2009–2010 and 2010–2011) at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. Large genetic variation was observed for phenology, growth, yield components and grain yield. While phenology (assessed as days to first flower, days to 50% flowering and days to first pod) was negatively correlated with grain yield at high temperature; plant biomass, pod number, filled pod number and seed number per plant were positively correlated. Genotypes were classified into short and long duration groups based on their maturity. Days to first flowering (DFF) of long duration genotypes were negatively associated with grain yield under stressed conditions in both years compared with medium to short duration genotypes. However, genotypes varied in their heat sensitivity and temperatures ≥35 °C produced yield losses up to 39%. A heat tolerance index (HTI) classified the genotypes into five groups: (i) stable heat tolerant (>0.5), (ii) moderately heat tolerant (0.1–0.49), (iii) stable heat sensitive (−ve values), (iv) heat tolerant to moderately sensitive (−0.10 to 1) and (v) heat sensitive to moderately tolerant (−0.5 to 0.4). Pod characteristics, including days to first pod and pod number per plant, were correlated with grain yield whereas canopy temperature depression (CTD) was generally not correlated. Heat tolerant genotypes in a range of maturities were identified that could be used to improve the heat tolerance of chickpea
High temperature tolerance in chickpea and its implications for plant improvement
Chickpea (Cicer arietinum L.) is an important food legume and heat stress affects chickpea ontogeny over a range of environments. Generally, chickpea adapts to high temperatures through an escape mechanism. However, heat stress during reproductive development can cause significant yield loss. The most important effects on the reproductive phase that affect pod set, seed set and yield are: (1) flowering time, (2) asynchrony of male and female floral organ development, and (3) impairment of male and female floral organs. While this review emphasises the importance of high temperatures >30°C, the temperature range of 32–35°C during flowering also produces distinct effects on grain yield. Recent field screening at ICRISAT have identified several heat-tolerant germplasm, which can be used in breeding programs for improving heat tolerance in chickpea. Research on the impact of heat stress in chickpea is not extensive. This review describes the status of chickpea production, the effects of high temperature on chickpea, and the opportunities for genetic improvement of chickpea tolerance to high temperatures
High temperature tolerance in chickpea and its implications for plant improvement
Abstract. Chickpea (Cicer arietinum L.) is an important food legume and heat stress affects chickpea ontogeny over a range of environments. Generally, chickpea adapts to high temperatures through an escape mechanism. However, heat stress during reproductive development can cause significant yield loss. The most important effects on the reproductive phase that affect pod set, seed set and yield are: (1) flowering time, (2) asynchrony of male and female floral organ development, and (3) impairment of male and female floral organs. While this review emphasises the importance of high temperatures >308C, the temperature range of 32-358C during flowering also produces distinct effects on grain yield. Recent field screening at ICRISAT have identified several heat-tolerant germplasm, which can be used in breeding programs for improving heat tolerance in chickpea. Research on the impact of heat stress in chickpea is not extensive. This review describes the status of chickpea production, the effects of high temperature on chickpea, and the opportunities for genetic improvement of chickpea tolerance to high temperatures
Climate Change and Heat Stress Tolerance in Chickpea
Chickpea (Cicer arietinum L.) is a cool-season food legume and suffers heavy yield losses when exposed to heat stress at the reproductive (flowering and podding) stage. Heat stress is increasingly becoming a severe constraint to chickpea production due to the changing scenario of chickpea cultivation and expected overall increase in global temperatures due to climate change. A temperature of 35 °C was found to be critical in differentiating heat-tolerant and heat-sensitive genotypes in chickpea under field conditions. Large genetic variations exist in chickpea for reproductive-stage heat tolerance. Many heat-tolerant genotypes have been identified through screening of germplasm/breeding lines under heat stress conditions in the field. A heat-tolerant breeding line ICCV 92944 has been released in two countries (as Yezin 6 in Myanmar and JG 14 in India) and is performing well under late-sown conditions. Heat stress during the reproductive phase adversely affects pollen viability, fertilization, pod set, and seed development, leading to abscission of flowers and pods, and substantial losses in grain yield. Studies on physiological mechanisms and genetics of heat tolerance, and identification of molecular markers and candidate genes for heat tolerance, are in progress. The information generated from these studies will help in developing effective and efficient breeding strategies for heat tolerance. The precision and efficiency of breeding programs for improving heat tolerance can be enhanced by integrating novel approaches, such as marker-assisted selection, rapid generation turnover, and gametophytic selection. Chickpea cultivars with enhanced heat tolerance will minimize yield losses in cropping systems/growing conditions where the crop is exposed to heat stress at the reproductive stage
Chickpea
The narrow genetic base of cultivated chickpea warrants systematic collection,
documentation and evaluation of chickpea germplasm and particularly wild
Cicer species for effective and efficient use in chickpea breeding programmes.
Limiting factors to crop production, possible solutions and ways to overcome
them, importance of wild relatives and barriers to alien gene introgression and
strategies to overcome them and traits for base broadening have been discussed.
It has been clearly demonstrated that resistance to major biotic and abiotic
stresses can be successfully introgressed from the primary gene pool
comprising progenitor species. However, many desirable traits including high
degree of resistance to multiple stresses that are present in the species
belonging to secondary and tertiary gene pools can also be introgressed by
using special techniques to overcome pre- and post-fertilization barriers.
Besides resistance to various biotic and abiotic stresses, the yield QTLs have
also been introgressed from wild Cicer species to cultivated varieties. Status
and importance of molecular markers, genome mapping and genomic tools
for chickpea improvement are elaborated. Because of major genes for various
biotic and abiotic stresses, the transfer of agronomically important traits into
elite cultivars has been made easy and practical through marker-assisted
selection and marker-assisted backcross. The usefulness of molecular markers
such as SSR and SNP for the construction of high-density genetic maps of
chickpea and for the identification of genes/QTLs for stress resistance, quality
and yield contributing traits has also been discussed
Field response of chickpea (Cicer arietinum L.) to high temperature
High temperature is an important factor affecting chickpea growth, development and grain yield. Understanding the plant response to high temperature is a key strategy in breeding for heat tolerance in chickpea (Cicer arietinum L.). This study assessed genetic variability for heat tolerance in chickpea and identified sources of heat tolerance that could be used for crop improvement. One hundred and sixty-seven genotypes were grown in two environments (heat stressed/late sown and non-stressed/optimal sowing time) in 2 years (2009–2010 and 2010–2011) at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. Large genetic variation was observed for phenology, growth, yield components and grain yield. While phenology (assessed as days to first flower, days to 50% flowering and days to first pod) was negatively correlated with grain yield at high temperature; plant biomass, pod number, filled pod number and seed number per plant were positively correlated. Genotypes were classified into short and long duration groups based on their maturity. Days to first flowering (DFF) of long duration genotypes were negatively associated with grain yield under stressed conditions in both years compared with medium to short duration genotypes. However, genotypes varied in their heat sensitivity and temperatures ≥35 °C produced yield losses up to 39%. A heat tolerance index (HTI) classified the genotypes into five groups: (i) stable heat tolerant (>0.5), (ii) moderately heat tolerant (0.1–0.49), (iii) stable heat sensitive (−ve values), (iv) heat tolerant to moderately sensitive (−0.10 to 1) and (v) heat sensitive to moderately tolerant (−0.5 to 0.4). Pod characteristics, including days to first pod and pod number per plant, were correlated with grain yield whereas canopy temperature depression (CTD) was generally not correlated. Heat tolerant genotypes in a range of maturities were identified that could be used to improve the heat tolerance of chickpea
Effects of high temperature at different developmental stages on the yield of chickpea
High temperature during the reproductive stage is a major limitation to yield of chickpea (Cicer arietinum L.). Chickpea yield is sensitive to variability in temperature and rising temperature in spring and post-rainy season exposes chickpea to heat stress in Australia and India, respectively. The objective of this research was to screen chickpea germplasm for heat tolerance by analysing the mean maximum and minimum temperatures at different developmental stages (vegetative, flowering and grain filling). A total of 167 genotypes were grown under two contrasting environments viz., heat stress (late season) and non-heat stress (normal season) in field conditions during 2009-10 (Year 1) and 2010-11 (Year 2) at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. Principal Component Analysis (PCA) demonstrated seasonal temperature differences (normal and late seasons) very effectively. Large genetic variation was found among the genotypes for their response to heat stress. The maximum temperature during grain filling period (GFMax) reduced the grain yield in chickpea. The inbred line ICCV 98902 had higher critical temperature (≥38˚C) during the grain filling period and produced reasonable grain yield under high temperature stress
