31 research outputs found
Optimum Small Optical Beam Displacement Measurement
We derive the quantum noise limit for the optical beam displacement of a
TEM00 mode. Using a multimodal analysis, we show that the conventional split
detection scheme for measuring beam displacement is non-optimal with 80%
efficiency. We propose a new displacement measurement scheme that is optimal
for small beam displacement. This scheme utilises a homodyne detection setup
that has a TEM10 mode local oscillator. We show that although the quantum noise
limit to displacement measurement can be surpassed using squeezed light in
appropriate spatial modes for both schemes, the TEM10 homodyning scheme
out-performs split detection for all values of squeezing.Comment: 13 pages, 7 figure
Continuous-wave phase-sensitive parametric image amplification
We study experimentally parametric amplification in the continuous regime
using a transverse-degenerate type-II Optical Parametric Oscillator operated
below threshold. We demonstrate that this device is able to amplify either in
the phase insensitive or phase sensitive way first a single mode beam, then a
multimode image. Furthermore the total intensities of the amplified image
projected on the signal and idler polarizations are shown to be correlated at
the quantum level.Comment: 14 pages, 7 figures, submitted to Journal of Modern Optics, Special
Issue on Quantum Imagin
Generation of Squeezing in Higher Order Hermite-Gaussian Modes with an Optical Parametric Amplifier
We demonstrate quantum correlations in the transverse plane of continuous
wave light beams by producing -4.0 dB, -2.6 dB and -1.5 dB of squeezing in the
TEM00, TEM10 and TEM20 Hermite- Gauss modes with an optical parametric
amplifier, respectively. This has potential applications in quantum information
networking, enabling parallel quantum information processing. We describe the
setup for the generation of squeezing and analyze the effects of various
experimental issues such as mode overlap between pump and seed and nonlinear
losses.Comment: 7 pages, 4 figure
Quantum Noise in Multipixel Image Processing
We consider the general problem of the quantum noise in a multipixel
measurement of an optical image. We first give a precise criterium in order to
characterize intrinsic single mode and multimode light. Then, using a
transverse mode decomposition, for each type of possible linear combination of
the pixels' outputs we give the exact expression of the detection mode, i.e.
the mode carrying the noise. We give also the only way to reduce the noise in
one or several simultaneous measurements.Comment: 8 pages and 1 figur
Nano-displacement measurements using spatially multimode squeezed light
We demonstrate the possibility of surpassing the quantum noise limit for
simultaneous multi-axis spatial displacement measurements that have zero mean
values. The requisite resources for these measurements are squeezed light beams
with exotic transverse mode profiles. We show that, in principle, lossless
combination of these modes can be achieved using the non-degenerate Gouy phase
shift of optical resonators. When the combined squeezed beams are measured with
quadrant detectors, we experimentally demonstrate a simultaneous reduction in
the transverse x- and y- displacement fluctuations of 2.2 dB and 3.1 dB below
the quantum noise limit.Comment: 21 pages, 9 figures, submitted to "Special Issue on Fluctuations &
Noise in Photonics & Quantum Optics" of J. Opt.
Experimental quantum-enhanced estimation of a lossy phase shift
When standard light sources are employed, the precision of the phase
determination is limited by the shot noise. Quantum entanglement provides means
to exceed this limit with the celebrated example of N00N states that saturate
the ultimate Heisenberg limit on precision, but at the same time are extremely
fragile to losses. In contrast, we provide experimental evidence that
appropriately engineered quantum states outperform both standard and N00N
states in the precision of phase estimation when losses are present.Comment: 5 page
Optical storage of high density information beyond the diffraction limit: a quantum study
We propose an optical read-out scheme allowing a demonstration of principle of information extraction below the diffraction limit. This technique, which could lead to improvement in data read-out density onto optical discs, is independent from the wavelength and numerical aperture of the reading apparatus, and involves a multi-pixel array detector. Furthermore, we show how to use non classical light in order to perform bit discrimination beyond the quantum noise limit
Quantum limits in image processing
We determine the limit to the maximum achievable sensitivity in the estimation of a scalar parameter from the information contained in an optical image in the presence of quantum noise. This limit, based on the Cramer-Rao bound and valid for any image processing protocol, is calculated for a shot noise limited image, for a locally squeezed light, and for a single-mode squeezed light in a well-defined "noise mode". In addition, we exhibit an image processing protocol that allows us to reach the limits in the different cases