1,466 research outputs found

    A design principle for improved 3D AC electro-osmotic pumps

    Full text link
    Three-dimensional (3D) AC electro-osmotic (ACEO) pumps have recently been developed that are much faster and more robust than previous planar designs. The basic idea is to create a ``fluid conveyor belt'' by placing opposing ACEO slip velocities at different heights. Current designs involve electrodes with electroplated steps, whose heights have been optimized in simulations and experiments. Here, we consider changing the boundary conditions--rather than the geometry--and predict that flow rates can be further doubled by fabricating 3D features with non-polarizable materials. This amplifies the fluid conveyor belt by removing opposing flows on the vertical surfaces, and it increases the slip velocities which drive the flow.Comment: 4 pages, 4 figures, submitted to Physical Review

    The Dentist and the Missions

    Get PDF

    Effect of Facial Encumbrance on Excimer Formation and Charge Resonance Stabilization in Model Bichromophoric Assemblies

    Get PDF
    Excimer formation and charge resonance stabilization in covalently linked bichromophoric systems with flexible spacers are important processes relevant to biochemistry and functional materials. Requiring a π-stacked cofacial arrangement of a pair of aromatic molecules at a van der Waals contact, the underlying geometrical reorganization that accompanies these events continues to be debated. Here we use a variety of methods including two-color resonant two-photon ionization spectroscopy (2CR2PI), ion yield measurements, hole-burning spectroscopy (HB), and laser-induced fluorescence (LIF) excitation and emission spectroscopy to compare the gas-phase spectroscopy and dynamics of the van der Waals dimers of fluorene, 9-methylfluorene (MF), and 9,9′-dimethylfluorene (F1). The goal of this work is to probe the influence of methyl substitution on the dynamics of excimer formation and charge resonance (CR) stabilization. The fluorene dimer, (F)2, displays lifetime broadened electronic spectra and the dominance of excimer emission, consistent with a rapid (picoseconds) formation of a π-stacked excimer upon electronic excitation. Ion yield measurements of (F)2 reveal a lowering of the ionization potential (IP) by some 0.38 eV relative to the monomer, reflecting significant CR stabilization. These trends are mirrored in the 9-methylfluorene dimer, (MF)2, as one face of the π-system remains open. In contrast, the electronic spectrum of the dimethyl-substituted dimer, (F1)2, shows narrow features representing a single band system, and analysis of the torsional structure in dispersed fluorescence spectra identifies this as emission from the locally excited state of a tilted (non-π-stacked) dimer, with no evidence of excimeric emission. The structure of this dimer reflects the increased importance of C–H/π interactions in the dimethyl-substituted system, as increased steric constraints block a cofacial approach. The IP of (F1)2 shows CR stabilization which is roughly 1/2 of that in π-stacked (F)2 dimer. Extensive theoretical calculations support these findings and show the importance of sandwich-type configurations for excitonic delocalization and CR stabilization

    The relationship between foot arch measurements and walking parameters in children

    Get PDF
    BACKGROUND: Walking mechanics are influenced by body morphology. Foot arch height is one aspect of body morphology central to walking. However, generalizations about the relationship between arch height and walking are limited due to previous methodologies used for measuring the arch and the populations that have been studied. To gain the knowledge needed to support healthy gait in children and adults, we need to understand this relationship in unimpaired, typically developing children and adults using dynamic measures. The purpose of the current study was to examine the relationship between arch height and gait in a sample of healthy children and adults using dynamic measures. METHODS: Data were collected from 638 participants (n = 254 children and n = 384 adults) at the Museum of Science, Boston (MOS) and from 18 4- to 8-year-olds at the Motor Development and Motor Control Laboratories. Digital footprints were used to calculate two arch indices: the Chippaux-Smirak (CSI) and the Keimig Indices (KI). The height of the navicular bone was measured. Gait parameters were captured with a mechanized gait carpet at the MOS and three-dimensional motion analyses and in-ground force plates in the Motor Development and Motor Control Laboratories. RESULTS: Linear regression analyses on data from the MOS confirmed that as age increases, step length increases. With a linear mixed effect regression model, we found that individuals who took longer steps had higher arches as measured by the KI. However, this relationship was no longer significant when only adults were included in the model. A model restricted to children found that amongst this sample, those with higher CSI and higher KI values take longer relative step lengths. Data from the Motor Development and Motor Control Laboratories showed that both CSI and KI added to the prediction; children with lower anterior ground reaction forces had higher CSI and higher KI values. Arch height indices were correlated with navicular height. CONCLUSIONS: These results suggest that more than one measure of the arch may be needed elucidate the relationship between arch height and gait.K12 HD055931 - NICHD NIH HHS; K12HD055931 - NICHD NIH HH

    Strength of π-Stacking, from Neutral to Cation: Precision Measurement of Binding Energies in an Isolated π-Stacked Dimer

    Get PDF
    π-Stacking interactions are ubiquitious across chemistry and biochemistry, impacting areas from organic materials and photovoltaics to biochemistry and DNA. However, experimental data is lacking regarding the strength of π-stacking forces—an issue not settled even for the simplest model system, the isolated benzene dimer. Here, we use two-color appearance potential measurements to determine the binding energies of the isolated, π-stacked dimer of fluorene (C13H10) in ground, excited, and ionic states. Our measurements provide the first precise values for π-stacking interaction energies in these states, which are key benchmarks for theory. Indeed, theoretical predictions using ab initio and carefully benchmarked DFT methods are in excellent agreement with experiment

    Influence of defects on the irreversible phase transition in the Fe-Pd doped with Co and Mn

    Get PDF
    The appearance of BCT martensite in Fe-Pd-based ferromagnetic shape memory alloys, which develops at lower temperatures than the thermoelastic martensitic transition, deteriorates the shape memory properties. In a previous work performed in Fe70Pd30, it was shown that a reduction in defects density reduces the non thermoelastic FCT-BCT transformation temperature. In the present work, the influence of quenched-in-defects upon the intensity and temperature of the thermoelastic martensitic (FCC-FCT) and the non thermoelastic (FCT-BCT) transitions in Fe-Pd doped with Co and Mn is studied. Differential scanning calorimetric and mechanical spectroscopy studies demonstrate that a reduction in the dislocation density the stability range of the FCC-FCT reversible transformation in Fe67Pd30Co3 and Fe66.8Pd30.7Mn2.5 ferromagnetic shape memory alloys.Fil: Bonifacich, Federico Guillermo. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Lambri, Osvaldo Agustin F.. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; ArgentinaFil: Gargicevich, Damian. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zelada, Griselda Irene. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ingeniería Eléctrica. Laboratorio de Extensión e Investigación en Materiales; ArgentinaFil: Pérez Landazábal, J. I.. Universidad Publica de Navarra; EspañaFil: Recarte, V.. Universidad Publica de Navarra; EspañaFil: Sánchez Alarcos, V.. Universidad Publica de Navarra; Españ

    Tridimensional Surface Relief Modulation of Polymeric Films

    Get PDF
    • …
    corecore