65 research outputs found

    Highlighting type A RRs as potential regulators of the dkHK1 multi-step phosphorelay pathway in Populus

    Get PDF
    In previous studies, we highlighted a multistep phosphorelay (MSP) system in poplars composed of two hybrid-type Histidine aspartate Kinases, dkHK1a and dkHK1b, which interact with three Histidine Phosphotransfer proteins, dkHPt2, 7, and 9, which in turn interact with six type B Response Regulators. These interactions correspond to the dkHK1a-b/dkHPts/dkRRBs MSP. This MSP is putatively involved in an osmosensing pathway, as dkHK1a-b are orthologous to the Arabidopsis osmosensor AHK1, and able to complement a mutant yeast deleted for its osmosensors. Since type A RRs have been characterized as negative regulators in cytokinin MSP signaling due to their interaction with HPt proteins, we decided in this study to characterize poplar type A RRs and their implication in the MSP. For a global view of this MSP, we isolated 10 poplar type A RR cDNAs, and determined their subcellular localization to check the in silico prediction experimentally. For most of them, the in planta subcellular localization was as predicted, except for three RRAs, for which this experimental approach gave a more precise localization. Interaction studies using yeast two-hybrid and in planta BiFC assays, together with transcript expression analysis in poplar organs led to eight dkRRAs being singled out as partners which could interfere the dkHK1a-b/dkHPts/dkRRBs MSP identified in previous studies. Consequently, the results obtained in this study now provide an exhaustive view of dkHK1a-b partners belonging to a poplar MSP

    A microbial supply chain for production of the anti-cancer drug vinblastine

    Get PDF
    International audienceAbstract Monoterpene indole alkaloids (MIAs) are a diverse family of complex plant secondary metabolites with many medicinal properties, including the essential anti-cancer therapeutics vinblastine and vincristine 1 . As MIAs are difficult to chemically synthesize, the world’s supply chain for vinblastine relies on low-yielding extraction and purification of the precursors vindoline and catharanthine from the plant Catharanthus roseus , which is then followed by simple in vitro chemical coupling and reduction to form vinblastine at an industrial scale 2,3 . Here, we demonstrate the de novo microbial biosynthesis of vindoline and catharanthine using a highly engineered yeast, and in vitro chemical coupling to vinblastine. The study showcases a very long biosynthetic pathway refactored into a microbial cell factory, including 30 enzymatic steps beyond the yeast native metabolites geranyl pyrophosphate and tryptophan to catharanthine and vindoline. In total, 56 genetic edits were performed, including expression of 34 heterologous genes from plants, as well as deletions, knock-downs and overexpression of ten yeast genes to improve precursor supplies towards de novo production of catharanthine and vindoline, from which semisynthesis to vinblastine occurs. As the vinblastine pathway is one of the longest MIA biosynthetic pathways, this study positions yeast as a scalable platform to produce more than 3,000 natural MIAs and a virtually infinite number of new-to-nature analogues

    Antifungal Activity of Resveratrol Derivatives against Candida Species

    Get PDF
    trans-Resveratrol (1a) is a phytoalexin produced by plants in response to infections by pathogens. Its potential activity against clinically relevant opportunistic fungal pathogens has previously been poorly investigated. Evaluated herein are the candidacidal activities of oligomers (2a, 3–5) of 1a purified from Vitis vinifera grape canes and several analogues (1b–1j) of 1a obtained through semisynthesis using methylation and acetylation. Moreover, trans-Δ-viniferin (2a), a dimer of 1a, was also subjected to methylation (2b) and acetylation (2c) under nonselective conditions. Neither the natural oligomers of 1a (2a, 3–5) nor the derivatives of 2a were active against Candida albicans SC5314. However, the dimethoxy resveratrol derivatives 1d and 1e exhibited antifungal activity against C. albicans with minimum inhibitory concentration (MIC) values of 29–37 ÎŒg/mL and against 11 other Candida species. Compound 1e inhibited the yeast-to-hyphae morphogenetic transition of C. albicans at 14 ÎŒg/mL

    In planta validation of HK1 homodimerization and recruitment of preferential HPt downstream partners involved in poplar multistep phosphorelay systems

    No full text
    International audienceMultistep phosphorelays involve a phosphate transfer from sensor histidine-aspartate kinases (HKs) to response regulators (RRs), via histidine containing phosphotransfer proteins (HPts). In Arabidopsis, some AHK receptors are organized as homodimers and able to interact with HPts (AHPs). However, there are no data available concerning the dimerization of the Arabidopsis osmosensor AHK1. Although only AHP2 is able to interact with AHK1 in yeast, validation of this interaction remains to be clarified in planta. The ability of poplar HK1 osmosensor, homologous to AHK1, to homodimerize and interact with three HPts (HPt2, 7 and 9) as preferential partners has been previously shown by yeast two-hybrid assay. However, protein interaction studies need to use complementary approaches to avoid interaction artifacts. Here, we confirmed in planta homodimerization of the cytoplasmic part of HK1 (HK1-CP) and the functional relevance of HK1-CP/ HPt interactions by bimolecular fluorescence complementation assays. This work led us to validate these partnerships and to propose them as probably involved in osmosensing pathway in Populus

    Illuminating Fungal Infections with Bioluminescence

    No full text
    International audienc

    Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta.

    No full text
    International audienceIn plants, the mevalonic acid (MVA) pathway provides precursors for the formation of triterpenes, sesquiterpenes, phytosterols and primary metabolites important for cell integrity. Here, we have cloned the cDNA encoding enzymes catalysing the final three steps of the MVA pathway from Madagascar periwinkle (Catharanthus roseus), mevalonate kinase (MVK), 5-phosphomevalonate kinase (PMK) and mevalonate 5-diphosphate decarboxylase (MVD). These cDNA were shown to functionally complement MVA pathway deletion mutants in the yeast Saccharomyces cerevisiae. Transient transformations of C. roseus cells with yellow fluorescent protein (YFP)-fused constructs reveal that PMK and MVD are localised to the peroxisomes, while MVK was cytosolic. These compartmentalisation results were confirmed using the Arabidopsis thaliana MVK, PMK and MVD sequences fused to YFP. Based on these observations and the arguments raised here we conclude that the final steps of the plant MVA pathway are localised to the peroxisome

    The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis.

    No full text
    International audienceFarnesyl diphosphate (FPP) synthase (FPS: EC.2.5.1.1, EC.2.5.1.10) catalyzes the formation of FPP from isopentenyl diphosphate and dimethylallyl diphosphate via two successive condensation reactions. A cDNA designated CrFPS, encoding a protein showing high similarities with trans-type short FPS isoforms, was isolated from the Madagascar periwinkle (Catharanthus roseus). This cDNA was shown to functionally complement the lethal FPS deletion mutant in the yeast Saccharomyces cerevisiae. At the subcellular level, while short FPS isoforms are usually described as cytosolic proteins, we showed, using transient transformations of C. roseus cells with yellow fluorescent protein-fused constructs, that CrFPS is targeted to peroxisomes. This finding is discussed in relation to the subcellular distribution of FPS isoforms in plants and animals and opens new perspectives towards the understanding of isoprenoid biosynthesis

    Deus ex Candida genetics: overcoming the hurdles for the development of a molecular toolbox in the CTG clade

    No full text
    International audienceDominant selectable markers, reporter genes and regulatable systems remain powerful molecular tools for genetic and cell biology studies in fungi. Among Saccharomycotina, it is currently accepted that most species belonging to the genus Candida have adopted a specific codon usage, whereby the CTG codon encodes serine instead of leucine. This group is now widely referred to as the CTG clade. For a long time, this uncommon genetic code has precluded the use of the available Saccharomyces or bacterial markers and reporter systems for genetic studies in Candida species. Over the last 15 years, increasing effort has been made to adapt drug-resistance markers, fluorescent protein variants, luciferase and recombinase genes to favour their expression in species related to the yeast CTG clade. In addition to the growing set of Candida genome sequences, these codon-optimized molecular tools have progressively opened a window for the investigation of the conservation of gene function within Candida species. These technical advances will also facilitate future genetic studies in non-albicans Candida (NAC) species and will help both in elucidating the molecular events underlying pathogenicity and antifungal resistance and in exploring the potential of yeast metabolic engineering

    Drug-resistant cassettes for the efficient transformation of Candida guilliermondii wild-type strains.

    No full text
    International audienceCandida guilliermondii is an opportunistic emerging fungal agent of candidiasis often associated with oncology patients. This yeast also remains an interesting biotechnological model for the industrial production of value-added metabolites. The recent whole-genome sequencing of the C. guilliermondii ATCC 6260 reference strain provides an interesting resource for elucidating new molecular events supporting pathogenicity, antifungal resistance and for exploring the potential of yeast metabolic engineering. In the present study, we designed an efficient transformation system for C. guilliermondii wild-type strains using both nourseothricin- and hygromycin B-resistant markers. To demonstrate the potential of these drug-resistant cassettes, we carried out the disruption and the complementation of the C. guilliermondii FCY1 gene (which encodes cytosine deaminase) known to be associated with flucytosine sensitivity in yeast. These two new dominant selectable markers represent powerful tools to study the function of a large pallet of genes in this yeast of clinical and biotechnological interest
    • 

    corecore