10 research outputs found

    High Pressure X-Ray Diffraction Study of UMn2Ge2

    Full text link
    Uranium manganese germanide, UMn2Ge2, crystallizes in body-centered tetragonal ThCr2Si2 structure with space group I4/mmm, a = 3.993A and c = 10.809A under ambient conditions. Energy dispersive X-ray diffraction was used to study the compression behaviour of UMn2Ge2 in a diamond anvil cell. The sample was studied up to static pressure of 26 GPa and a reversible structural phase transition was observed at a pressure of ~ 16.1 GPa. Unit cell parameters were determined up to 12.4 GPa and the calculated cell volumes were found to be well reproduced by a Murnaghan equation of state with K0 = 73.5 GPa and K' = 11.4. The structure of the high pressure phase above 16.0 GPa is quite complicated with very broad lines and could not be unambiguously determined with the available instrument resolution

    Functional interplay between MSL1 and CDK7 controls RNA polymerase II Ser5 phosphorylation

    No full text
    Proper gene expression requires coordinated interplay among transcriptional coactivators, transcription factors and the general transcription machinery. We report here that MSL1, a central component of the dosage compensation complex in Drosophila melanogaster and Drosophila virilis, displays evolutionarily conserved sex-independent binding to promoters. Genetic and biochemical analyses reveal a functional interaction of MSL1 with CDK7, a subunit of the Cdk-activating kinase (CAK) complex of the general transcription factor TFIIH. Importantly, MSL1 depletion leads to decreased phosphorylation of Ser5 of RNA polymerase II. In addition, we demonstrate that MSL1 is a phosphoprotein, and transgenic flies expressing MSL1 phosphomutants show mislocalization of the histone acetyltransferase MOF and histone H4 K16 acetylation, thus ultimately causing male lethality due to a failure of dosage compensation. We propose that, by virtue of its interaction with components of the general transcription machinery, MSL1 exists in different phosphorylation states, thereby modulating transcription in flies

    De novo mutations in <i>MSL3</i> cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation

    Get PDF
    The etiological spectrum of ultra-rare developmental disorders remains to be fully defined. Chromatin regulatory mechanisms maintain cellular identity and function, where misregulation may lead to developmental defects. Here, we report pathogenic variations in MSL3, which encodes a member of the chromatin-associated male-specific lethal (MSL) complex responsible for bulk histone H4 lysine 16 acetylation (H4K16ac) in flies and mammals. These variants cause an X-linked syndrome affecting both sexes. Clinical features of the syndrome include global developmental delay, progressive gait disturbance, and recognizable facial dysmorphism. MSL3 mutations affect MSL complex assembly and activity, accompanied by a pronounced loss of H4K16ac levels in vivo. Patient-derived cells display global transcriptome alterations of pathways involved in morphogenesis and cell migration. Finally, we use histone deacetylase inhibitors to rebalance acetylation levels, alleviating some of the molecular and cellular phenotypes of patient cells. Taken together, we characterize a syndrome that allowed us to decipher the developmental importance of MSL3 in humans

    De novo mutations in MSL3 cause an X-linked syndrome marked by impaired histone H4 lysine 16 acetylation

    No full text

    Endogenous retroviruses in the origins and treatment of cancer

    No full text
    corecore