2,208 research outputs found

    Measurement of HO2 and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 KM

    Get PDF
    The major events and results to date of the ongoing program of measuring stratospheric composition by the technique of far-infrared Fourier-transform spectroscopy from a balloon-borne platform are reviewed. The highlights of this period were the two balloon flight campaigns which were performed at Palestine, Texas, both of which produced large amounts of scientifically useful data

    Measurement of H2O and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 km

    Get PDF
    Data analysis results from the 1983 BIC 1 and 2 balloon flights are presented, with emphasis on H2O2, OH, HCL, O3, O2, and H2O. A 2 sigma limit on H2O2 abundance was set, as a function of altitude. This is comparable to or less than the theoretically predicted winter abundances from the 2-D models of Dupont, with a large enough summer maximum to facilitate concentration profile measurements. There is a definite drop in OH concentration from day to night following two model profiles. There was general agreement between HF measurements. The dominant role of the far wings of H2O lines in low altitude spectra was recognized. The strength of these wings exceeds that of many molecular line cores, including O3 and O2, especially near the long wavelength end of the spectra (100 cm (-1)). Newly measured positions for O3 and H2O were obtained

    Measurement of H2O and other trace gases in the stratosphere using a high resolution far-infrared spectrometer at 28 KM

    Get PDF
    The highlights of the stratospheric program were reviewed for the past 2.5 years. The major efforts were analysis of the data from the BIC-2 campaign, and the building or new instrumentation to replace that lost at the end of BIC-2. For clarity, the review will be done by topic, rather than chronologically: construction of the initial far-infrared spectrometer, balloon slight program, laboratory measurement, data analysis, and duplicate stabilized platform

    Retrieval and molecule sensitivity studies for the global ozone monitoring experiment and the scanning imaging absorption spectrometer for atmospheric chartography

    Get PDF
    The Global Ozone Monitoring Experiment (GOME) and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) are diode based spectrometers that will make atmospheric constituent and aerosol measurements from European satellite platforms beginning in the mid 1990's. GOME measures the atmosphere in the UV and visible in nadir scanning, while SCIAMACHY performs a combination of nadir, limb, and occultation measurements in the UV, visible, and infrared. A summary is presented of the sensitivity studies that were performed for SCIAMACHY measurements. As the GOME measurement capability is a subset of the SCIAMACHY measurement capability, the nadir, UV, and visible portion of the studies is shown to apply to GOME as well

    U.S. Participation in the GOME and SCIAMACHY Projects

    Get PDF
    This report summarizes research done under NASA Grant NAGW-2541 from April 1, 1996 through March 31, 1997. The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, consultation and development for SCIAMACHY near-real-time (NRT) and off-line (OL) data products, and development of infrared line-by-line atmospheric modeling and retrieval capability for SCIAMACHY. SAO also continues to participate in GOME validation studies, to the limit that can be accomplished at the present level of funding. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, and remains working in normal fashion. SCIAMACHY is currently in instrument characterization. The first two European ozone monitoring instruments (OMI), to fly on the Metop series of operational meteorological satellites being planned by Eumetsat, have been selected to be GOME-type instruments (the first, in fact, will be the refurbished GOME flight spare). K. Chance is the U.S. member of the OMI Users Advisory Group

    Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space

    Get PDF
    Formaldehyde (HCHO) columns measured from space by solar UV backscatter allow mapping of reactive hydrocarbon emissions. The principal contributor to these emissions during the growing season is the biogenic hydrocarbon isoprene, which is of great importance for driving regional and global tropospheric chemistry. We present seven years (1995-2001) of HCHO column data for North America from the Global Ozone Monitoring Experiment (GOME), and show that the general seasonal and interannual variability of these data is consistent with knowledge of isoprene emission. There are some significant regional discrepancies with the seasonal patterns predicted from current isoprene emission models, and we suggest that these may reflect flaws in the models. The interannual variability of HCHO columns observed by GOME appears to follow the interannual variability of surface temperature, as expected from current isoprene emission models

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    Tunable far infrared studies of molecular parameters in support of stratospheric measurements

    Get PDF
    Lab studies were made in support of far infrared spectroscopy of the stratosphere using the Tunable Far InfraRed (TuFIR) method of ultrahigh resolution spectroscopy and, more recently, spectroscopic and retrieval calculations performed in support of satellite-based atmospheric measurement programs: the Global Ozone Monitoring Experiment (GOME), and the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY)

    US Participation in the GOME and SCIAMACHY Projects

    Get PDF
    The research performed during this reporting period includes development and maintenance of scientific software for the GOME retrieval algorithms, consultation on operational software development for GOME, further sensitivity and instrument studies to help finalize the definition of the SCIAMACHY instrument, and consultation on optical and detector issues for both GOME and SCIAMACHY. The Global Ozone Monitoring Experiment was successfully launched on the ERS-2 satellite on April 20, 1995, during this reporting period, and is working in the expected fashion. The European Space Agency has made their selections from responses to the Announcement of Opportunity for GOME validation and science studies, part of the overall ERS AO. The Smithsonian Astrophysical Observatory (SAO) proposal has been selected. These proposals are primarily for access to the data; ESA does not provide research funding for the selected investigations. The SAO activities that are carried out as a result of selection by ESA are funded by the present grant, to the limit that can be accomplished at the present level of funding. SCIAMACHY is currently in Phase C/D. Instrument design is almost finalized and selection of infrared detectors from the initial production run has been made
    • …
    corecore