General Disclaimer One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

Produced by the NASA Center for Aerospace Information (CASI) MRASURRIGENT OF HO_{2} AND OTHER TRACE GASES IN THE ETRATOSPHERE USING A HIGH RESOLUTION FAR-INFRARED SPECTROMETER AT 28 KM

GRANT NSE 5175

Semiannual Status Report No. 14
For the Period 1 January 1984 to 30 Jane 1984
I

Principaz Investigators

Dr. Wesley A. Traub
Dr. Kelly V. Chance
Prepared for
Hational Keronautics and Space Administration
Greenbelt, Maryland 20771

The Smithsonian Astrophysical Ubservatory
is a msmber of the
Har exy-Smithsonian Center fnr Astrophysics

The NASA Technical Officer for this grant is Igor J. Eberste n, Code, 61\%. Atmospheric Chemistry and Dynamics Branch, Goddard Space Flight Center, Greenbelt, Maryland 20771.

Principal Investigators Dr. Wesley A. Traub
Dr. Kelly V. Chance

September 1984

Prepared for
National Aeronautics and Space Administration Greenbelt, Maryland 20771

Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts 02138

```
The Smithsonian Astrophysical Observatory
    is a member of the
Harvard-Smithsonian Center for Astrophysics
```

The NASA Technical Officer for this grant is Igor J. Eberstein, Code 616, Atrnospheric Chemistry and Dynamics Branch, Goddard Space Flight Center, Greenbelt, Maryland 20771.

I. Personnel Working on this Grant During this Reporting Period

Dr. Wesley A. Traub (Principal Investigator)
Dx. Kelly V. Chance (Principal Investigator)
Dr. Stephen C. Wofsy (Co-Investigator)

II. Status Summary

During this reporting period we worked on data analysis from our 1983 BIC-I and II balloon flights, with emphasis on $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{OH}, \mathrm{HCl}, \mathrm{HF}, \mathrm{O}_{3}, \mathrm{O}_{2}$, and $\mathrm{H}_{2} \mathrm{O}$. Results were presented at a BIC data meeting, at a workshop on the stratosphere near Munich, West Germany, and in a paper submitted for publication ($\mathrm{H}_{2} \mathrm{O}_{2}$). Finally, we have begun design work on our major new effort, the building of a new far-infrared spectrometer and stratospheric telescope to replace the system destroyed in the BIC-II free-fall. A fuller discussion of each of these areas follows.
(1) $\mathrm{H}_{2} \mathrm{Q}_{2}$. We completed our search for stratcspheric $\mathrm{H}_{2} \mathrm{O}_{2}$ in our January 1983 flight spectra. From our analysis of the most sensitive ciean spectral feature of hydrogen peroxide in the far-infrared, the ${ }^{R} Q_{5}$ branch at $112.2 \mathrm{~cm}^{-1}$, we have set a 2 sigma upper limit on its abundance as a function of altitude. In the altitude range where we were most sensitive for $\mathrm{H}_{2} \mathrm{O}_{2}$ detection, between 26 and 34 km , we find a 2 sigma upper limit which is comparable to or less than theoretically predicted winter abundances from the 2-D models of du Pont and of AER, at our latitude of observation. A copy of the paper describing this wo:k (subsequently accepted by JGR Atmospheres) is included with
this report as Appendix A.
These measurements represent the most sensitive search for $\mathrm{H}_{2} \mathrm{O}_{2}$ yet made in the atnosphere. In the near future we intend to extend the analysis to our June 1983 flight data. Both models predict a winter minimum in $\mathrm{H}_{2} \mathrm{O}_{2}$, with a summer maximum that is sufficiently large to make definite concentration profile measurements a distinct possibility. Future measurements of this molecule will be greatly enhanced by the increased sensitivity and greater resolution (allowing the measurement of up to four ${ }^{R_{Q}}$ branches) of our new spectrometer.
(2) OH. We have begun to extract both vertical and cemporal abundance profiles for $0 H$ from our June 1983 flight spectra. This is summarized briefly in the attached figure, which was prepared for the June 1984 mefting "Current Issues in our Understanding of the Stratosphere and the Future of the Ozone Layer", where Dr. Traub presented results for both on and $\mathrm{H}_{2} \mathrm{O}_{2}$. As shown in the figure, there is a clear and dramatic drop in OH from day to night, as generally anticipated from photochemical theory but never before directly measured in the stratosphere. Note that the reduction of OH is not total in the nighttime scans. There are small remaining OH lines that we currently believe to be from mesospheric Oll.

Vertical profiles from 3 of the 12 available $O H$ lines are shown. The measured trend follows, in a very rough sense, two available model profiles (from M. Prather and A. J. Owens), but more analysis is required before we can make definitive
comparisons. Active work is continuing in this area.
(3) HCl and $\mathrm{HE} . \mathrm{HCl}$ is our "prime molecule" for the BIC intercomparison. At the 2nd BIC data analysis meeting, in Paris at ONERA in May 1984, we presented our vertical profiles for HCl and HF. Although our results, as well as those of most others, were still preliminary, we were very encouraged by the amount of agreement among the majority of the profiles (including ours). An important result from this meeting was the discovery that ore of our two HF lines was contuminated by a weak $\mathrm{H}_{2} \mathrm{O}$ line, which explained a large systematic difference we had observed, and improved the general agreement between HF measurements. The HCl and $H F$ work is expected to be essentially complete, including modelling of the interfering water line, in time for the last BIC data meeting, in December 1984.
(4) $\mathrm{O}_{3}, \mathrm{O}_{2}$ and_H $\mathrm{H}_{2} \mathrm{O}$. We are analyzing our spectra for these molecules with emphasis on using them as checks on the overall retrieval process, more than as investigations from which we expect fundamental results. Since the O_{3} profile was the best. determined profile from the BIC-II campaign, we have tried to improve the accuracy of our retrieval in several ways, to approach the overall ability of various investigators for measuring ozone. One improvement was to fully recognize the dominant role of the far wings of $\mathrm{H}_{2} \mathrm{O}$ lines in low-altitude spectra. This has been theoretically predicted by A. Clough at AFGL, and appears to be verified in our spectra. The strength of these wings exceeds that of many molecular line cores (including
O_{3} and O_{2} for our lowest elevation spectra, especially near the long wavelength ($100 \mathrm{~cm}^{-1}$) end of the spectra. Another place for improvement has been in the knowledge of line center positions and pressure broadening coefficients. We have obtained from B. Carli et al. a set of newly-measured positions for O_{3}, which noticeably improves our least-squares fitting procedure. We have also begun to work closely with R. Gamache of the University of Lowell, who has provided us with newly-calculated O_{3} and $\mathrm{H}_{2} \mathrm{O}$ broadening parameters; these often differ substantially from the values in the AFGL line listing, and we have been able to retrieve very good O_{3} frofiles with the new parameters. The O_{2} work is important in that i.t directly checks our retrieval process, since O_{2} häs a known, constant mixing ratio. These efforts are currently quite active and will continue at least until the December 1984 BIC data meeting.
(5) Rebuilding. The instrument rebuilding effort began in the middle of this reporting period. We have made good progress, particularly in the area of electronics. The mechanical design was somewhat slower, but with the hiring of a senior mechanical engineer in June 1984 we began to move rapidly. As of the end of this reporting period, we have completed most of the design of the stabilized platform, and part of the design of the telescope. A preliminary optical layout was completed, incorporating our new higher resolution $\left(0.004 \mathrm{~cm}^{-1}\right.$ versus 0.032 cm^{-1}, unapodized). The 8-fold increase in optical path difference was accomplished with only a modest increase in
spectrometer weight. Since the end of the reporting period, a final optical layout has been adopted, with the detailed design proceeding rapidly. As expected, the rebuilding work is consuming a large fraction of our time, at the expense of data analysis. Our current schedule projects the completion of assembly and start of laboratory testing in July 1985.
III. Publications and Presentations
(1) "An Cpper Limit for Stratospheric Hydrogen Peroxide", Chance and Traub, to appear in JGR Atmospheres.
(2) Seminars on our stratospheric measurement program, by Traub, at the Division of Engineering and Applied Physics, Harvard University, in February, and at the Air Force Geophysical Laboratory, in March.
(3) "HCl and HF Intercomparison Studies", by Chance and Traub under CMA sponsorship (included here for completeness, as Appendix B).
(4) Presentation of BIC-I and BIC-IT preliminary results, by Traub and Chance, at ONERAp in May.
(5) Presentation of OH and $\mathrm{H}_{2} \mathrm{O}_{2}$ prel iminary results, by Traub, at Munich workshop, in June.

Appendix A

An Upper Limit for Stratospheric Hydrogen Peroxide
N

 7\% •

A. Balloon Flight and Instrumentation
-a-grex on fysity uoorreq moxy oxe oreq pasn eqep aux

Palestine. Texas $\left(32^{\circ} \mathrm{N}\right)$ on 23 January 1983. Data were obtained between 2:00 and 3:00 ga CST at a float pressure of $\mathrm{F}=50 \pm 0.07$ mbar, measured by a capacitance manometer provided ay NSBF. Frcm the pressure we determine an altitude of $35.1 \pm 0.1 \mathrm{kn}$, using the o. S. Standard Atmospheres January. 30° North atmosphere IU. S. Standard Atmospheres SuFplenents. 1966J. The spectra were taken in a limb-scanning node, by measuring the thermal enission of the stratosphere. over a series of elevation angles between $+30^{\circ}$ and $\mathbf{- 3 . 9 0}$. The elevation angles used in this paper and the tangent height at each angle are given in Table I. Eight interferograxs. requiring 47.5 seconds each, were taken at each elevation. although as few as four are usable at some elevations because of problems with the recorded data. Spectra of an on-board blackbody reference source were also taken.

The measurements were made with a double-beam fourier triansform spectrometer [Traub et al.. 1987] operating over the range $70-250 \mathrm{~cm}^{-1}$ at $0.064 \mathrm{~cm}^{-1}$ apodized resoluticn. For this flight Ge:Ga photoconductor detectors at 4 K were used.
 spectrometer's entrance aperture by a telescope with an 0.3° field of view. giviag about 2 km vertical resolution at the tangent point for down-looking angles. The telescope elevation
ミ玉
 stratospheric chemistry as a reservoir and sink for ode hydrogen species and for its ability to interconvert them. chiefly through the reactions

$2 \mathrm{HaO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$

$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{hu} \longrightarrow 2 \mathrm{OH}$
$\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{OH} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{HO}_{2}$

stratospheric hydrogen peroxide: first, Waters et al. [1981] have
 and -35 km from microwave limb sounding data obtained on a balloon flight on 20 February 1981: second, there is an upper limit of $1-1.5 \times 10^{14} \mathrm{~cm}^{-2}$ above 30 km (which is equivalent to a mean mixing ratio of $0.4-0.6 \mathrm{ppbv}$), obtained from a ground-based millimeter-wave study in May-June 1983 (R. L. dezafra, J. w. Barrett. A. Parrish and P. R. Solomon, private communication. 1983). The present study yields an altitude dependent upper limit curve between 21.5 and 38.0 km for 23 January 1983 that is substantially below these previous values at all but the highest altitudes.
flight. Peak Q bramch positions vere obtained to an accuracy of $\pm 0.01 \mathrm{~cm}^{-1}$ by calibrating the spectra using residal $H_{2} 0$ linea in the spectrum rkauppinen et al.. 19781. Comparison of our laboratory spectra of $\mathrm{H}_{2} \mathrm{O}_{2}$ and flight spectra showed that four 0 branches, the ${ }^{R_{Q_{4}}}$ at $94.00 \mathrm{~cm}^{-1}$, $R_{Q_{5}}$ at $112.20 \mathrm{~cm}^{-1}$. $R_{Q_{6}}$ at $130.32 \mathrm{~cm}^{-1}$ and ${ }^{R_{0}}{ }_{7}$ at $148.36 \mathrm{~cm}^{-1}$, were the best candidates for measurement of stratospheric $\mathrm{H}_{2} \mathrm{O}_{2}$. FEg. 1. shows a comparison between these Q branches in a sur of 10 laboratory spectra and a sum of 6 stratospheric spectra (-2.8°. tangent height $=27.4 \mathrm{~km}$). Of these four Q branches, the ${ }^{R_{Q_{s}}}$ is in the cleanest
 the present deterainations. The other three a branches should be

 line at our apodized resolation of $0.064 \mathrm{~cm}^{-1}$. This is confirmed by calculations of Bownan, Helminger and De Lucia (w. C. Boinean. private communication, 1980), who predict for the ${ }^{R_{O_{s}}}$ branch that all lines from $\mathrm{J}=6$ to $\mathrm{J}=20 \mathrm{lie}$ in an interval of widh 0.039 cm^{-1}. These lines include over gos of the population contributing to this a branch at strataspheric temperatures. This narromess is due to a coincidence, wherein the effect of a slight difference in the upper and lower torsional state rotational constants on line position is almost offset by the effect of centrifugal distortion. (The ${ }^{P_{Q}}$ branches, on the other hand, are further broadened by this effect.) The temperature
was controlled by a stabilized pointing system capable of pointing in absolute elevation to $\pm 0.02^{\circ}$, while rejecting gondola tilt and sway. The telescope and stabilized platform, which had their first field test on this flight, will be described in a separate publication.

The telescope, stabsilized platform and spectrometer were mountea on a gondola supplied by the Jet Propulsion Laboratory. which gave azimuth control to $\pm 1^{\circ}$. All spectra were taken with the telescope pointing at a true heading of $357(\pm 3)^{\circ}$.

B. $\mathrm{H}_{2} \mathrm{O}_{2}$ Molecular Parameters

 with well determined mechanics [Hurt et al., 1965; Helminger et al.. 1981]. The most prominent features in the far-infrared spectrum of $\mathrm{H}_{2} \mathrm{O}_{2}$ are narrow Q branches arising from a concurrent change in the torsional and rotational stãte of the molecule. The positions. shapes and widths, and strengths of the Q branches which are the most suitable for determination of stratospheric $\mathrm{H}_{2} \mathrm{O}_{2}$ were determined from various sources of data. Examination of the far-infraređ spectrum of Hunt et al. [:965] showed a number of strong a branches within the wavelength region of our spectrometer which were sufficiently sharp (at or near their spectral resolution of $0.4 \mathrm{~cm}^{-1}$; to be attractive candiates for stratospheric work.

In order to more precisely define the peak positions and shapes of ti:e aranches, we measured laboratory spectra of $\mathrm{H}_{2} \mathrm{O}_{2}$ with the same instrument which we later used on the bailoon

The strengths for individual lines calculated in this way
are intrinsically quite accurate, since they axe kased directly on dipoie moment measurements, and since the state-dependent effects of centifugal distortion and othe state-depencent interaction on the aistortion and other vibrational-rctational major uncertional level transitions in ligot molecules. The major uncertainties in the Q branch strengths, which are suss of indiviaual line strensths, are: (1) the possibility mix interference by unassigned P and R branch IEnes (which wonld lines frective strengths), and (2) the possibility that $\mathrm{H}_{2} \mathrm{O}_{2}$ population at stratospheric J 66 and $\mathrm{J}>20$. which account for less than 10% of the $\mathrm{H}_{2} \mathrm{O}_{2}$ population at stratospheric temperature, would not contribute to an observed spectral feature (which would decreass the effective strengtis). Thus. an estimate of 10 for the total encertainties of the Q branch strengths is quite realistic. and is assumed in our analysis.

c. Analysis of Spectra

 The flight spectra are normalized in intensity by a high elevation ($+30^{\circ}$) spectrum, with its eaission lines removed, to eliminate the residual unbalanced continuum in our 2-bear interferometer: second. we divide by a similarly processed 268 k blackbody refarence spectrum, recorded during the flight. The spectra are then smoothed with a von Bann siiding 3-point weighting function ($0.25,0.50,9.25$) [Haming, 19771 and
weighting function (0.25, 0.50. 9.25) [Baming, 19771 and, for
shirt of the ${ }^{R_{Q_{5}}}$ branch fosition in going from laboratory to stratospheric temperature ($i \mathrm{e}$. , about 300 K to 230 K) is caiculated to be approximately $-0.01 \mathrm{~cm}^{-1}$. by assuming an position shift with \mathcal{J} inside the Q branch envelcpe and calculating the wevenumber shift of J (max). This was alsr confirmed in calculations by Bowman (private communication, 1980).
where the $S\left({ }^{R_{Q}}{ }_{K}, T\right)$ are the Q branch strengths in
$\mathrm{cm}^{-1} /$ (molecule cm^{-2}), σ is the position of the Q branch in cm^{-1}. μ_{01} is in esu $\sim \mathrm{cm}$ and k is in $\mathrm{cm}^{-1} \mathrm{deg}^{-1}$. $Q_{\text {rot }}$ and $Q_{\text {tors }}$ are the rotational and torsional partition functions. The measured
pcsitions at room temperature and the calculated sirengths at several temperatures of tine ${ }^{R_{Q_{4}}},{ }^{R_{Q_{5}}},{ }^{R_{Q}} Q_{6}$ and ${ }^{R_{Q}}$, branches are given in Table II. .
stratospheric temperature (i e., about 300 K to 230 K) is
caiculated to be approximately $-0.01 \mathrm{~cm}^{-1}$. by assuming an average
position shift with \mathcal{A} inside the Q branch envelope and
calculating the wavenumber shift of J(max). This was alss
confirmed in calculations by Bowman (private communication,
1980).
of stratospheric $\mathrm{H}_{2} \mathrm{O}_{2}$ - TC obtain strengths, we determination dipole moment between the $n=0, \tau=1$ strengths, we use the effective states, $p=1$ states. $\mu_{01}=1.58 \pm 0.01$ debye, taken from the measurements of Cohen and Pickett [1981 and calculate the appropriate statistical sums:

 in deg rot $^{\text {and }}$

ι

to obtain the best possible signal-to-noise ratio, so that in the
 each of the 6 elevation angles. A careful examination of the
 branch of $\mathrm{H}_{2} \mathrm{O}_{2}$ and also present in all spectra. The structure in the spectra in the interval $112.19 \pm 0.03 \mathrm{~cm}^{-1}$ is not reproducible from spectrum to spectrum and is taken to be noise (the width of this interval is 4 times the 10 uncertainty of the temperature shifted Q branch position). To determine the upper limit curve, integraiced noise equivalent widths in the region of the ${ }^{R_{0}} \mathbf{Q}_{5}$ branch were determined in two ways. First, the peak-to-peak area of the largest structure
with an extremum in the $112.19 \pm 0.03 \mathrm{~cm}^{-1}$ region for each spectrum was integrated by computer between limits deternined by a straight line drawn to isolate the extrenum, as shown in Fig. 2 (b) for the $+1.0^{\circ}$ spectrum. The principal limitation of this

 local baseline curvature which may be present. For this reason we also employ the following, second, method.

To insure that there is no fortuitous cancellation of noise and spectrum at any particular elevation angle, two short sections of the apodized spectra outside of the bandpass of the detector and filter response were anaiyzed to give a reference noise level for the spectra. The res fluctuations within these
for the small temperature zange sampled by the weighting function for each limb scan angle. Both sets of corrected noise areas were then used to
derive $\mathrm{H}_{2} \mathrm{O}_{2}$ upper limits. by the following procedure: (1) The noise areas are considered to be 1σ limits. (2) An additional 125 uncertainty is added. in quadrature, to the noise equivalent wisths for the uncertainties in molecular strengths and widths, spectral calibration. telescope pointing ($\pm 0.02^{\circ}=35$) and balloon altitude ($\pm 0.1 \mathrm{~km}=1.5 \%$). These results are multiplied by 2 to give a set of 2σ noise equivalent widths, including uncertainties. winich are 2.01 times the original noise equivalent widths. (3) The sets of noise equivalent widths are divided by the ${ }^{R_{C_{5}}}$ strengths (Table II) appropriate to the effective temperature if each limb scan angle, to obtain upper linits on the $\mathrm{H}_{2} \mathrm{O}_{2}$ column density. (4) To obtain rigorous upper limits for mixing ratius we do not subtract contributions from higher layers in an onion-peeliang fashion, but consider the upper limits on

 atmospheric ray-tracing calculations was performed to determine the total column density of air in one density scale heignt. taken to be 6.4 km , above the tangent height for each limb-scan angle, along the limb-scan line of sight. The effective heights (one-half airmass) for the line-of-sight geometries were also determined. The January, 30° North atmosphere IU. S. Standard Atmospheres Supplements, 1966 was used for these calc slations.
(5) The final upper limit mixing ratio values are obtained by
regions. from $39-45$ and $254-257 \mathrm{~cm}^{-1}$, were measured over $1 \mathrm{~cm}^{-1}$ intervais. Since the ras values from both regions and all elevation angles were comparable, an average value was calculated: finally, this average was multiplied by 1.56 to match the effect of specträl background subtraction and rescaling which was described above. The resultant average value of rms noise, 0.0022 of the spectral flux of a 268 K blackbody. was multiplied by $0.064 \mathrm{~cm}^{-1}$, which is the width of the corresponaing apodized spectral element. The result. which may be considered a globally
avaraged noise limit. is a noise equivalent width of $1.4 \times 10^{-=}$ spectral element. The result. which may be considered a globally
averaged noise limit. is a noise equivalent width of 1.4×10^{-5} cm^{-1}. This corresponds to the area of the shaded box in fig. 2(b).
 continuum level present in our spectra and for radiance at 112.2 cm^{-1} by a multiplicative factor $\mathrm{F}(\theta)$,
$B\left(\sigma_{0}, T_{e}(\theta)\right)$ is the blackbody spectral flux at $112.2 \mathrm{~cm}^{-1}$ and the effective temperature of the airmass sampled by the ray at angle θ. and $\mathrm{B}\left(\sigma_{0}, \mathrm{~T}_{\text {ref }}\right)$ is the spectral flux at $112.2 \mathrm{~cm}^{-1}$ of the
reference blackbody. This correction is exact for an isothe where $C(b$. is the measured continum spectral flux in the

\section*{\section*{(5)

 } where $C(b$. is the measured continum spectral flux in the reference blackbody, This correction is exact for an isothermal

atmosphere or if the source of the continuum flux has the same altitude distribution as $\mathrm{H}_{2} \mathrm{O}_{2}$. It is a very good approximation altitude distribution as $\mathrm{H}_{2} \mathrm{O}_{2}$. It is a very good approximation e . O_{2} e? evation calculated: finally, this ave
 cm^{-1} by 112
14
limit. Both calculations use the JPL $82-57$ chemical rate set [JPL. 1982]. From the figure we see that our 20 upper limit for $\mathrm{H}_{2} \mathrm{O}_{2}$ is very close to the du Pont model values for alticudes near 31 km . Our upper limit is slightly less than the AER model at altitudes from about 26 to 32 kr . Uncertainties affecting the comparison of the measured upper limit and the model calculations include uncertainties in the rates for the major production and loss reactions listed earlier [JPL, 1982; IPL. 1983] uncertainties in the diurnally averaged concentrations of the reactants HO_{2} and OH , and the possible effect of our measuring
 in the calculations $\left(30^{\circ}\right)$. Both models predict a factor 3 to 4 increase in the summer concentration profile of $\mathrm{H}_{2} \mathrm{O}_{2}$ between 2.6 and 30 km . We have stratospheric limb-scan spectra from the BIC-II campaign in June 1983, currentiy in the process of data reduction, that should provide a much more conclusive test of modelling of stratospheric hydrogen percxide. Our upper limit curve lies substantia
Our upper limit curve lies substantially below the Waters
et al. [1981] tentative measurement of $1.1 \pm 0.5 \mathrm{gpbv}$, even though the results are from the same latitude and are both wintertime measurements. For comparison and both convert the previously mentioned upper limit of denastals, we (private communication, 1983) to an average mixing dezafra et al.
 $0.4-0.6 \mathrm{ppbv}$ above 30 km . This is to be compared wing ratio of . 0.6 ppbv . 0.1 ppbv from the -2.2° spectra, valid for 1 scale height

SLAKHSIOATMMONYOY

 Operations group at JPL for supplying the gondola and the support in Palestine for this flight. In particular, we would like to thank Rudy Rillian, Hugh Clark and Ed Barlow (our flight support group), and Jim Riccio. We are grateful to the staff at NSBF for a flawiess balloon flight. This flight was the first test of our newly-developed stratospheric telescope and stabilized platform. We owe a great debt of gratitude to the Central Engineering design and for support in the field. We are particularly indebted to George Nystrom and Larry Coyle. Finally, as always, ve have depended on John Lavagnino for excellent computer programaing and support.
 were provided by the NASA Opper Atmospheric Research Program under grant NSG 5175. The data reduction was supported by the fluorocarbon Program Panel of the Chemical Manufacturers Association under contract FC 82-445.
above 30.4 km . Both previcusly determined results are well above koth sets of model predictions, even for summertime $\mathrm{H}_{2} \mathrm{O}_{2}$. The results of Waters et al, and of dezafra et al. are incluexed in Fic. 3.
Upper limits or measurements of a single species are of
course of limiteā use as tests of atmospheric chenical models because of the close coupling of the various chemical reactions, particularly ameng species involved in the same catalytic cycle, such as the RO_{y} species. The flight upon which the current $\mathrm{H}_{2} \mathrm{O}_{2}$ limit is based yielded good quality spectra of $\mathrm{OH}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{3}$, HCl and HF as well as the present $\mathrm{H}_{2} \mathrm{O}_{2}$ results. In the near future we should have a complete set of simultaneous altitude profiles of these other species.
Traub, W. A., K. V. Chance, J. C. Brasunas. J. M. Vrtilek and N.

$$
\begin{aligned}
& \text { Traub, W. A. . K. V. Chance, J. C. Brasunas. J. M. Vrtilek and N } \\
& \text { p. Carleton. Use of a Fourier transform spectrometer on a }
\end{aligned}
$$

balloon-borne telescope and at the MMT. Broc. S.P.I.E.e.

$$
\text { Instrumentation_in_Astronomy IV 332. 164-175 } 1982 .
$$

U. S. Standard Atmosphere Supplements, 1966, U.S. Goverament Printing office, Washington, D.C. 20402. Waters. J. W. . J. C. Hardy. R. F. Jarnot and H. M. Pickett.
Chlorine monoxide radical, ozone and hydrogen peroxide: stratospheric measurements by microwave limb sounding, Science 214. 61-64. 1981.
J. Atmos._Sci., In Press, 1984 .
LI
REFERENCES Cohen, E. A. and R. M. Pickett. The dipole moment of hydrogen peroxide. J.Mol._Spect. 87, 582-583, 1981. Hamming, R. W., 'Digital Filters'. Prentice-Hall, Englewood Cliffs, 1977: cf. p. 89.
Helminger, P., W. C. Bowman and F. C. De Lucia, A study of the rotational-torsional spectrum of hydrogen peroxide between 80 and 700 GHz , I._MO1._Spect. 85, 120-130, 1981.
Hunt, R. H., R. A. Leacock. C. W. Peters and K. T. Hecht,
Internal rotation in hydrogen peroxide: the far-infrared spectrum and the determination of the hindering potential, J. Chem. Phys. 42. 1931-1946, 1965.
Chemical kinetic and photochemical data for use in stratospheric modelling, evaluation number 5, JPL publication 82-57, 1982: evaluation number 6. JPL publication 83-62, 1983, Jet Propulsion Laboratory. Pasadena, CA.
Kauppinen, J., T. Karkkainen and E. Kyro, High resolution
spectrum of water vapor between 30 and $720 \mathrm{~cm}^{-1}$,
71. 15-45, 1978.
Ko, M. K. W., N. D. Sze, M. Livshits, M. B. McElroy and J. A. PyIe, The seasonal and latitudinal behavior of trace gases and ozone as simulated by a two-dimensional model of the atmosphere, arrows are used to indicate upper limits for both the points presented in this paper and the box showing the dezafra et al.

19

Figure Captions

 (bottom) emissicn spectra in the regions of the strongest ${ }^{R_{Q}}$ branches of the rotational-torsional spectrum of $\mathrm{H}_{2} \mathrm{O}_{2}$ in our spectral region. The same spectrometer was used to measure both sets of spectra. The stratospheric spectrum (-2.8° elevation) is normalized to the 268 K blackbody reference. The laboratory spectrum is from approximately 2 torr $\mathrm{H}_{2} \mathrm{O}_{2}$ in a 61 cm cell at room temperature. The vertical scale for each laboratory
spectral interval is normalized to the spectral radiance of a
blackbody at the same temperature.
Fig. 2. (a) $112 \mathrm{~cm}^{-1}$ regions of stratospheric spectra, with the
$\mathrm{H}_{2} \mathrm{O}_{2}$ line position ($112.19 \mathrm{~cm}^{-1}$) at stratospheric temperature
indicated. All except the $+1.0^{\circ}$ spectrum are vertically
displaced by arbitrary amounts to avoid overlap. (b) Detail from
$+1.0^{\circ}$ spectrum showing area of extremum. The cross-hatched area
 $\mathrm{H}_{2} \mathrm{O}_{2}$ as derived from the local spectrum at this elevation angle: this area leads to the noise measure NEQ(1) as described in the text. The shadec box indicates the 1 a noise level as measured in featureless regions of the specirum. and leads to the noise measure $N E Q(2)$. Since, for this elevation, the latter measure dominates, it is used to calculate the $\mathrm{H}_{2} \mathrm{O}_{2}$ upper limit shown in Table I.

Table II
Q Branch Positions and Strengths

S85＊0	29200	286＊0	65°	$98.8>t$	${ }^{L} \nabla_{y}$
$\dagger \boldsymbol{E}^{\bullet} \boldsymbol{I}$	$95^{\circ} \mathrm{I}$	$E L^{-T}$	$\boldsymbol{2 6}{ }^{*} \mathrm{~T}$	てE＊OEI	${ }^{9} \mathrm{O}_{\mathrm{y}}$
Es＊	89^{-2}	$t \boldsymbol{I}^{-} \tau$	69°	0でで「	$s_{o_{y}}$
$t 6^{\circ} \mathrm{E}$	$\varepsilon 8^{-\varepsilon}$	$99^{\circ} \varepsilon$	¢でを	00＊＊6	${ }^{7} \mathrm{O}_{\mathrm{y}}$
（rooz）	（13\％z）	（xosz）	（800E）	पCTT	पुपह］द 6
sप75uəxzs pue suorztsoa yourag o					
II эrqey					

ORXEMAL PAGE M
OF MOOR QUALITY

ORKIMRA, PADE IT
 OF POOS GIJALTA

Fig. 1

FIg. 3

Appendix B

4. HCl and HF Intercomparison Studies

As a part of our CMA-sponsored research, we have undertaken an intercomparison study of HCl and HF stratospheric measurements, including a literature survey of the determination of line parameters and of stratospheric meusurements, and a mail survey of the investigators who have reported stratospheric measurements in the literature. The mail survey is now complete, with 10 of the 12 investigating groups responding, either by mail, by telephone or in person.

(A) Line parameters

The available line parameters have been partially discussed in our final report for contract FC 81-375. Also, it is worth noting the extensive effort by the HALOE group (Rinsland et al., 1982) in surveying the line parameters of these two molecules. Apart from the rather special requirements of HALOE, the greatest need at present is for more accurate strengths for the fundamental bands of both molecules and for more accurate pressure broadening coefficients for the rotational lines of both molecules. Fortunately, both of these needs are being addressed by research either in progress or planned for the immediate future. Line positions for both molecules are known to sufficient accuracy to satisfy all present atmospheric investigations.

HE Strengths for the vibrational fundamental can be determined, as in our final report for contract FC 81-375, to 8\%
(1) sigma) accuracy from data presently in the literature. These values differ from the present AFGL catalog strengths by an average of 5%, for the R_{0} to R_{4} lines. The AFGL numbers come from the work of Ogilvie et al. (1980), who use experimental dipole moment matrix elements, including the value for the fundamental from Lovell and Herget (1962) to determine a power series expansion for the dipole moment function.

Data for the pressure broadening of the fundamental band of HF is very limited. Smith (1958) determined broadening efficiency ratios of foreign gases (including N_{2} and O_{2}) to pure HF for the R_{0} to R_{4} lines. His study includes temperature dependence of the efficiency ratios for $\mathrm{N}_{2} / \mathrm{HF}$ (measurements at 298 K and 373 K). These results must be used in conjunction with self-broadening coefficients of HF to obtain the appropriate pressure broadening coefficients. For self-broadening coefficients, see Beigang et al. (1979) and the review by Hough (1977). The AFGL numbers are probably adequate for determinations of $H F$ above 25 km by solar absorption (i.e., their use probably causes no more than 10% error at 25 km), but the way they were actually determined is unclear. A careful, direct study of both self and foreign gas broadening coefficients is long overdue.

Strengths for the rotational lines of HF cai be determined directly from the dipole moment to an accuracy of substantially better than 1%, even without making Herman-Wallis corrections. This has been shown in our CMA Quarterly Progress Report No. 2 to contract FC81-375, and in Tipping (1976).
pressure broadening coefficients for the rotational lines of HF need to be determined, particularly since the stratospheric lines tend to be quite saturated. Determinations presently available include the N_{2}-broadened R_{0} through R_{4} lines, by Bachet (1972), which does not include experimental uncertainties, and a measurement of the N_{2}-broadened R_{0} line by the IROE group, We have found no measurements of HF rotational line broadening by O_{2} in the literature.

HCL Strengths for the HCl fundamental have been determined by Toth et ail. (1970), Babrov et al. (1959), Varanasi et al. (1972), Benedict et al. (1956) and Lin et al. (1978). Lin et al. claim to have suffered some loss of HCl on the cell walls. The other investigations all have errors, either otated or deduced from the papers, around 5\%. Indeed, the strengths of the P_{3} through R_{5} lines from these investigations, for both isotopic species, have an rms deviation of 5% or less. The AFGL strengths, as for HF, come from Ogilvie et al. (1980). They use they rotationless dipole moment matrix element for the fundamental band from Smith (1973), who determines it as a best average of the infrared values and that obtained from the molecular beam work of Kaiser (1970). The present AFGL strengths should be good to 5% (l sigme.
pressure broadening coefficients of the HCl fundamental have been studied by a number of groups. Until recently though, the results reported in the literature have included very listle temperature dependence and O_{2} broadening information. Results

B-4

until recently are summarized in the $H A L O E$ document, to which should be added petrov and Podkladenko (1972) and Petrov (1975), two Soviet studies that contain information on the temperature dependence of $\mathrm{HCl} / \mathrm{N}_{2}$ broadening. There have been two recent studies that are the most useful to date for stratospheric work: those of Houdeau et al. (1980) (included in the HALOD study), and of Ballard et al. (1983), which is just now avajlable. The Hoidueau study includes both $\mathrm{HCl} / \mathrm{N}_{2}$ and $\mathrm{HCL} / \mathrm{O}_{2}$, at 298 K and 163 K, from which one may calculate the temperature dependences of the broadening coefficients. The estimated uncertainties of the measurements is 5\%. The Ballard et al. study is only of $\mathrm{HCl} / \mathrm{N}_{2}$ ' but with a much more extensive temperature study. Their uncertainties are $3-4 \%$ for the strong lines near band center. Both studies include all the lines likely to be used in atmosphexic studies including lines that will contribute significantly to $H A L O E$ and $P M R$ measurements. Over the range P_{5} to R_{7}, the range of commonality, the iverage disagreement at 235 K , appropriate to the mid-stratosphere, (from the measured numbers of Ballard et al. at 235 K and power law interpolations of the 298 K and 163 K Houdeau et al. values; is 7\%. Both sets of numbers are substantially lower than the Toth and Darnton (1974) values, which are currently on the AFGL listing.

Line strengths for the HCl rotational lines are analogous to those of HF, in that they may be calculated to greater than 1% accuracy directiy from the static dipole moment.

We have fourd no determinations of line broadening parameters for the rotational lines of HCl in the literature. In

B-5

this sense, the situation is worse than that of HF , since the lines are similarly saturated. The relatively advanced state of knowledge of the HCl $(0,1)$ line broadening parameters, including temperature dependence, would be very useful if it could be transferred directly to the (0,0) case, but it is diffj.cult to quantify the common wisdom that pressure broadening coefficients are the same for different vibrational transitions. There is an expeximental study on the $(0,0)$ and $(0,1)$ bands of HCl broadened by Ar, by Smith and Giraud (1977), which indicates that the correspondence is good co 10% in that particular case, but nothing else to go by except theoretical studies; in searching for an analogous case, we note that the $(0,0)$ and $(0,1) \mathrm{HF} / \mathrm{N}_{2}$ numbers presently available are not of sufficient accuracy to warrant a qualitative comparison.

(B) Stratospheric Measurements

The past several years, roughly the tenure of the BIC program and the ongoing analysis of results, has coincided with a shift in spectral analysis techniques for most investigators doing discrete line measurements of HCl and HF (and, of course, all of the other important stratospheric trace species). The change has been from line equivalent width measurements or, in a few cases, comparison of measured and synthetic spectra, to nonlinear least-squares fits of measured spectra to synthetic spectra calculated using quite sophisticated radiative transfer modelling of the atmosphere. However, there are apparently no atmospheric profiles yet in the literature for either species

B-6

derived by the new least-squares fitting methods. For column measurements , a full nonlinear least squares treatment may not be justified, since uncertainty due to the shape of the profile may exceed the uncertainty to which the spectra can be fit (see Mankin and Coffey, 1983). Some reanalysis of older data using the more modern techniques is already underway, for example, the reanalysis of the 1978 Bomem data by Jae Park at NASA/Larc.

Several problems that can affect both the absorption and emission balloon-borne measurements of HF and HCl remain to be addressed by most investigators: (I) Instrumental field-of-view effects can significantly broaden the effective weighting functions used in a profile retrieval, and may need to be included in the radiative transfer calculations. (2) Flight pressures and temperatures need to be measured in a fasion consistent with prime scientific data. The pressure measurement can be accomplished straightforwardly by including a calibrated capacitance manometer as part of the scientific package, but local temperature measurement from a balloon gondola is difficult.

The history of stratospheric measurements is fairly long: 1973 to the present for HCl and 1974 to the present for HF , including measurements in both hemispheres. The thrust of the BIC campaign is to resulve differences in measurement and analysis techniques, and to separate these from real atmospheric differences. Hopefully, one result will be that a full enough understanding of atmospheric measurements is reached to make the full record of $\mathrm{HCl} / \mathrm{HF}$ measurements of use in understanding trends
in atmospheric composition.

HE The stratospheric investigations of HF are summarized in the World Meteorological Organization report (Hudson, 1982, TabIe 1-22), to which the following additions should be made: Carli et al. (1980), Girard et al. (1982), Girard et al. (1983), Mankin and Coffey (1983), Traub and Chance (1981) and the recent ground-based work of G. M. Stokes and D. W. Johnson at Battelle Northwest Laboratories (personal communication, 1984).

For solar absorption measurements of the HF fundamental band, the R_{1} line has been used almost exclusively, except for one of the seven investigating groups using only the R_{0}, one using thite R_{0} and R_{1}, and one using the R_{0}, R_{1}, P_{1} and P_{2}. Line selection is governed by resolution ard other instrumental considerations: it appears to have been made with sufficient regard for interferences in all cases that this should not influence the results. In particular, the R_{1} line appears to be quite free of interference in the stratospheric spectrum. Line strengths all relate back to the results of Lovell and Herget (1962), although they have varying subsequent histories and vary by small amounts cone study states a line strength without attribution that is quite close to the other values). Most of the studies predate the inclusion of HF in the AFGL listing. Only one study includes an uncertainty due to the line strength in the final errors.

Pure rotational ines of $H F$ have been detected in the stratosphere by Carli et al. (1980) and by Traub and Chance
(1981). The first actual profile of $H F$ from our results is included in this report. Both groups measuring HF rotational lines are doing so by emission measurements, and both have suffered in the past from the difficulty of absolute pointing, which is being addressed by the design of suitable gyroscope- and inclinometer-based stabilization systems.

The only current evidence of the variability of stratospheric HF is that found in Mankin and Coffey (1983), who see both temporal and latitudinal variations substantially above their level of precision in the column density of HF above 12 km .

HCl The stratospheric HCl investigations are also summarized in the WMO report, with the following additjons: Carli et al. (1980), Chance et al. (1980), Girard et al. (1982), Girard et al. (1983), Mankin and Coffey (1983), Traub and Chance (1981), and Stokes and Johnson (personal communication, 1984).

The fundamental vibrational lines of HCl that have been used most extensively for measurement of stratospheric concentrations are the R_{1} and R_{2} lines of $\mathrm{H}^{35} \mathrm{Cl}$, although at least six other lines have been utilized in addition. The bulk of the information always comes from the $H^{35} C I R_{1}$ and/or R_{2} lines. Lines strengths for most of the investigations come from Toth et al. (1970), since the investigations predate the inclusion of HCl parameters on the AFGL listing. More recent investigations use the AFGL strengths, whose genesis is described above. Most investigators have either used the weak line approximation or have used the ' Toth et al. self-broadening

parameters for line saturation effects (excepting, of course, recent investigators using the AFGL numbers). Only one reference was found for the use of an actual N_{2} broadening study of HCl line broadening, that of Rank et al. (1963).

The groups measuring rotational lines of HCl (Traub and Chance, Carli et al.) have similar difficulties to those encountered for HF . There is a larger choice of lines than for HF, but the difficulty with line saturation is as severe. The comments on absolute pointing apply equally as well to HCl . Our first profile for stratospheric HCl is also included as part of this report.

Mankin and Coffey (1983) also have measurements showing significant temporal and latitudinal variation of the HCl column density above 12 km , well outside their limits of experimental precision. Girard et al. (1982,1983) have data showing substantial variation of the HCl column density above 11.5 km with latitude, obtained over a relatively short (ll day) time period in 1980.

References

Babrov, H., G. Ameer and W. Benesch, J. Mol. Spect. 3, 185 (1959).

Bachet, G., C. R. Acad. Sci. Ser. B 274, 1319 (1972).
Ballard, J., W. B. Johnston, P. H. Moffat and D. T. Llewellyn-Jones, preprint distributed at BIC-II data analysis meeting, Paris, May 1984, also, see Ballard, Quarterly Report 2, CMA Contract 82-444.

Beigang, R., G. Litfin and R. Schneider, Phys. Rev. A 20, 229 (1979).

Benedict, W. S., R. Herman, G. E. Moore and S. Silverman, Can. J. Phys. 31, 850 (1956).

Carli, B., F. Mencaraglia and A. Bonetti, Int. J. IR Mill. Waves, 1, 263 (1980).

Chance, K. V., J. C. Brasunas and W. A. Traub, Geophys. Res. Lett. 1, 704 (1980).

Girard, A., L. Gramont, N. Louisnard, S. LeBoiteau and G. Fergant, Geophys. Res. Lett. 2, 135 (1982).

Girard, A., G. Fergant, L. Gramont, O. Lado-Bordowsky, J. Laurent, S. Le Boiteux, M. P. Lemaitre and N. Louisnard, J. Geophys. Res. C88, 5377 (1983).

Houdeau, J. P., M. Larvor and C. Haeusler, Can. J. Phys. 58, 318 (1980).

Hough, J. J. T., Appl. Opt. 16, 2297 (1977).
Hudson, R. (Ed.), The Stratosphere 1981: Theory and Measurement, Rep. 11, WMO Global Ozone Res. Monit. Proj., World Meteorol. Org., Geneva (1982).

Kaiser, E. W., J. Chem. Phys. 53, 1686 (1970).
Lin, C. L., E. Niple, J. H. Shaw, W. M. Uselman and J. G. Calvert, J. Quant. Spect. Rad. Trf. 20, 581 (1978).

Lovell, R. J. and W. F. Herget, J. Opt. Soc. Am. 52, 1374 (1962).
Mankin, W. G. and M. T. Coffey, J. Geophys. Res. C88, 10776 (1983).

Ogilvie, J. F., W. R. Rodwell and R. H. Tipping, J. Chem. Phys. 73, 5221 (1980).

Rank, D. H., D. P. Eastman, B. S. Rao and T. A. Wiggins, J. Mol. Spect. 10, 34 (1963).

Rinsland, C. P., M. A. H. Smith, J. H. Park, G. A. Harvey, J. M. Russel. 1 III and D. J. Richardson, NASA Technicál Memorandum 83232 (1982).

Smith, D. F., Spectrochim. Acta 12, 224 (1958).
Smith, E. W., and M. Giraud, J. Chem. Phys. 66. 1762 (1977).
Smith, F. G., J. Quant. Spect. Rad. Trf. 13, 717 (1973).
Tipping, R. H.,'J. Mol. Spect. 61, 272 (1976).
Toth, R. A., R. H. Hunt and E. K. Plyer, J. Mol. Spect. 35, 110 (1970).

Toth, R. A., and L. A. Darnton, J. Mol. Spect. 49, 100 (1974).
Traub, W. A. and K. V. Chance, Geophys. Res. Lett. 8, 1075 (1981).

Varanasi, P., S. K. Sarangi and G. D. T. Tejwani, J. Quant. Spect. Rad. Trf. 12, 857 (1972).

