11 research outputs found
Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects.
BACKGROUND: The long-term effects of sibutramine treatment on the rates of cardiovascular events and cardiovascular death among subjects at high cardiovascular risk have not been established. METHODS: We enrolled in our study 10,744 overweight or obese subjects, 55 years of age or older, with preexisting cardiovascular disease, type 2 diabetes mellitus, or both to assess the cardiovascular consequences of weight management with and without sibutramine in subjects at high risk for cardiovascular events. All the subjects received sibutramine in addition to participating in a weight-management program during a 6-week, single-blind, lead-in period, after which 9804 subjects underwent random assignment in a double-blind fashion to sibutramine (4906 subjects) or placebo (4898 subjects). The primary end point was the time from randomization to the first occurrence of a primary outcome event (nonfatal myocardial infarction, nonfatal stroke, resuscitation after cardiac arrest, or cardiovascular death). RESULTS: The mean duration of treatment was 3.4 years. The mean weight loss during the lead-in period was 2.6 kg; after randomization, the subjects in the sibutramine group achieved and maintained further weight reduction (mean, 1.7 kg). The mean blood pressure decreased in both groups, with greater reductions in the placebo group than in the sibutramine group (mean difference, 1.2/1.4 mm Hg). The risk of a primary outcome event was 11.4% in the sibutramine group as compared with 10.0% in the placebo group (hazard ratio, 1.16; 95% confidence interval [CI], 1.03 to 1.31; P=0.02). The rates of nonfatal myocardial infarction and nonfatal stroke were 4.1% and 2.6% in the sibutramine group and 3.2% and 1.9% in the placebo group, respectively (hazard ratio for nonfatal myocardial infarction, 1.28; 95% CI, 1.04 to 1.57; P=0.02; hazard ratio for nonfatal stroke, 1.36; 95% CI, 1.04 to 1.77; P=0.03). The rates of cardiovascular death and death from any cause were not increased. CONCLUSIONS: Subjects with preexisting cardiovascular conditions who were receiving long-term sibutramine treatment had an increased risk of nonfatal myocardial infarction and nonfatal stroke but not of cardiovascular death or death from any cause. (Funded by Abbott; ClinicalTrials.gov number, NCT00234832.
Efficacy and safety of once weekly subcutaneous idrabiotaparinux in the treatment of patients with symptomatic deep venous thrombosis.
BACKGROUND:
Idraparinux, a long acting inhibitor of factor (F) Xa, is as effective as standard anticoagulant therapy for patients with symptomatic deep venous thrombosis. We investigated the potential use of the biotinylated molecule, idrabiotaparinux. Biotinylation enables reversal of the anticoagulant effect.
METHODS:
We performed a randomized double-blind trial in 757 patients with symptomatic deep venous thrombosis, comparing equimolar doses of idrabiotaparinux (3 mg) with idraparinux (2.5 mg), both given subcutaneously, once weekly for 6 months. Inhibition of FXa activity was measured at days 15, 36, 57, 92 and 183. The efficacy outcome was recurrent venous thromboembolism. The safety outcomes were clinically relevant bleeding and death.
RESULTS:
Inhibition of FXa was similar in the two treatment groups at each time point of measurement. Recurrent venous thromboembolism during the 6-month treatment period occurred in nine of 386 patients (2.3%) in the idrabiotaparinux group and in 12 of 371 patients (3.2%) in the idraparinux group, a difference of - 0.9% (95% confidence interval, -3.2-1.4%). The incidence of clinically relevant bleeding was 5.2% in the idrabiotaparinux group and 7.3% in the idraparinux group (P = 0.29), a difference of - 2.1% (95% confidence interval, -5.6-1.4%). Six patients (1.6%) who received idrabiotaparinux died, compared with 12 patients (3.2%) given idraparinux, a difference of - 1.7% (95% confidence interval, -3.9-0.5%).
CONCLUSIONS:
Idrabiotaparinux has a similar time course of FXa inhibition, efficacy and safety to idraparinux for the treatment of deep venous thrombosis
Evolocumab and clinical outcomes in patients with cardiovascular disease
peer reviewedBACKGROUND Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years. RESULTS At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%). CONCLUSIONS In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets. © 2017 Massachusetts Medical Society
Evolocumab and clinical outcomes in patients with cardiovascular disease
BACKGROUND Evolocumab is a monoclonal antibody that inhibits proprotein convertase subtilisin-kexin type 9 (PCSK9) and lowers low-density lipoprotein (LDL) cholesterol levels by approximately 60%. Whether it prevents cardiovascular events is uncertain. METHODS We conducted a randomized, double-blind, placebo-controlled trial involving 27,564 patients with atherosclerotic cardiovascular disease and LDL cholesterol levels of 70 mg per deciliter (1.8 mmol per liter) or higher who were receiving statin therapy. Patients were randomly assigned to receive evolocumab (either 140 mg every 2 weeks or 420 mg monthly) or matching placebo as subcutaneous injections. The primary efficacy end point was the composite of cardiovascular death, myocardial infarction, stroke, hospitalization for unstable angina, or coronary revascularization. The key secondary efficacy end point was the composite of cardiovascular death, myocardial infarction, or stroke. The median duration of follow-up was 2.2 years. RESULTS At 48 weeks, the least-squares mean percentage reduction in LDL cholesterol levels with evolocumab, as compared with placebo, was 59%, from a median baseline value of 92 mg per deciliter (2.4 mmol per liter) to 30 mg per deciliter (0.78 mmol per liter) (P<0.001). Relative to placebo, evolocumab treatment significantly reduced the risk of the primary end point (1344 patients [9.8%] vs. 1563 patients [11.3%]; hazard ratio, 0.85; 95% confidence interval [CI], 0.79 to 0.92; P<0.001) and the key secondary end point (816 [5.9%] vs. 1013 [7.4%]; hazard ratio, 0.80; 95% CI, 0.73 to 0.88; P<0.001). The results were consistent across key subgroups, including the subgroup of patients in the lowest quartile for baseline LDL cholesterol levels (median, 74 mg per deciliter [1.9 mmol per liter]). There was no significant difference between the study groups with regard to adverse events (including new-onset diabetes and neurocognitive events), with the exception of injection-site reactions, which were more common with evolocumab (2.1% vs. 1.6%). CONCLUSIONS In our trial, inhibition of PCSK9 with evolocumab on a background of statin therapy lowered LDL cholesterol levels to a median of 30 mg per deciliter (0.78 mmol per liter) and reduced the risk of cardiovascular events. These findings show that patients with atherosclerotic cardiovascular disease benefit from lowering of LDL cholesterol levels below current targets