165 research outputs found
Predicting dislocation climb: Classical modeling versus atomistic simulations
The classical modeling of dislocation climb based on a continuous description
of vacancy diffusion is compared to recent atomistic simulations of dislocation
climb in body-centered cubic iron under vacancy supersaturation [Phys. Rev.
Lett. 105 095501 (2010)]. A quantitative agreement is obtained, showing the
ability of the classical approach to describe dislocation climb. The analytical
model is then used to extrapolate dislocation climb velocities to lower
dislocation densities, in the range corresponding to experiments. This allows
testing of the validity of the pure climb creep model proposed by Kabir et al.
[Phys. Rev. Lett. 105 095501 (2010)]
Screw dislocation in zirconium: An ab initio study
Plasticity in zirconium is controlled by 1/3 screw dislocations
gliding in the prism planes of the hexagonal close-packed structure. This
prismatic and not basal glide is observed for a given set of transition metals
like zirconium and is known to be related to the number of valence electrons in
the d band. We use ab initio calculations based on the density functional
theory to study the core structure of screw dislocations in zirconium.
Dislocations are found to dissociate in the prism plane in two partial
dislocations, each with a pure screw character. Ab initio calculations also
show that the dissociation in the basal plane is unstable. We calculate then
the Peierls barrier for a screw dislocation gliding in the prism plane and
obtain a small barrier. The Peierls stress deduced from this barrier is lower
than 21 MPa, which is in agreement with experimental data. The ability of an
empirical potential relying on the embedded atom method (EAM) to model
dislocations in zirconium is also tested against these ab initio calculations
Desynchronization of Neocortical Networks by Asynchronous Release of GABA at Autaptic and Synaptic Contacts from Fast-Spiking Interneurons
An activity-dependent long-lasting asynchronous release of GABA from identified fast-spiking inhibitory neurons in the neocortex can impair the reliability and temporal precision of activity in a cortical network
- …