25 research outputs found

    Differential effects of prenatal and postnatal expressions of mutant human DISC1 on neurobehavioral phenotypes in transgenic mice: evidence for neurodevelopmental origin of major psychiatric disorders

    Get PDF
    Strong genetic evidence implicates mutations and polymorphisms in the gene Disrupted-In-Schizophrenia-1 (DISC1) as risk factors for both schizophrenia and mood disorders. Recent studies have shown that DISC1 has important functions in both brain development and adult brain function. We have described earlier a transgenic mouse model of inducible expression of mutant human DISC1 (hDISC1) that acts in a dominant-negative manner to induce the marked neurobehavioral abnormalities. To gain insight into the roles of DISC1 at various stages of neurodevelopment, we examined the effects of mutant hDISC1 expressed during (1) only prenatal period, (2) only postnatal period, or (3) both periods. All periods of expression similarly led to decreased levels of cortical dopamine (DA) and fewer parvalbumin-positive neurons in the cortex. Combined prenatal and postnatal expression produced increased aggression and enhanced response to psychostimulants in male mice along with increased linear density of dendritic spines on neurons of the dentate gyrus of the hippocampus, and lower levels of endogenous DISC1 and LIS1. Prenatal expression only resulted in smaller brain volume, whereas selective postnatal expression gave rise to decreased social behavior in male mice and depression-like responses in female mice as well as enlarged lateral ventricles and decreased DA content in the hippocampus of female mice, and decreased level of endogenous DISC1. Our data show that mutant hDISC1 exerts differential effects on neurobehavioral phenotypes, depending on the stage of development at which the protein is expressed. The multiple and diverse abnormalities detected in mutant DISC1 mice are reminiscent of findings in major mental diseases

    Neurobiology of rodent self-grooming and its value for translational neuroscience

    Get PDF
    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders-including models of autism spectrum disorder and obsessive compulsive disorder-that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.National Institutes of Health (U.S.) (Grant NS025529)National Institutes of Health (U.S.) (Grant HD028341)National Institutes of Health (U.S.) (Grant MH060379

    Hippocampal Proteomic and Metabonomic Abnormalities in Neurotransmission, Oxidative Stress, and Apoptotic Pathways in a Chronic Phencyclidine Rat Model

    Full text link

    Risperidone and ritanserin but not haloperidol block effect of dizocilpine on the active allothetic place avoidance task

    No full text
    Spatial working memory or short-term place memory is impaired in schizophrenia. The efficiency of antipsychotic drugs, particularly of typical antipsychotics, on cognitive deficit in schizophrenia remains disputable. Inhibition of serotonin (5-HT) 2A/2C receptors is important for cognitive improvement in schizophrenic patients treated with antipsychotics. The aim of the present work was to establish the effect of the 5-HT2A/2C receptor antagonist ritanserin (2.5 or 5 mg/kg), the dopamine D2 antagonist haloperidol (0.1 or 1 mg/kg), and the atypical antipsychotic risperidone (0.1 mg/kg or 1 mg/kg), which is an antagonist of both 5-HT2A/2C and D2 receptors, on cognitive deficit induced by subchronic administration of dizocilpine (MK-801, 0.1 mg/kg). We used the active allothetic place avoidance (AAPA) task, requiring the rat to differentiate between relevant and irrelevant stimuli, in a way similar to disruption of information processing disturbed in schizophrenic patients. Our results show that treatment with 5-HT2A/2C receptor antagonists, regardless of their effect on D2 receptors, blocked the cognitive impairment produced by MK-801. Haloperidol did not sufficiently reduce the deficit in AAPA induced by MK-801. Interestingly, administration of risperidone and haloperidol alone, but not ritanserin, impaired the AAPA performance in intact rats. Ritanserin and risperidone actually improve cognition independently of their effect on locomotor activity in an animal model of schizophrenia-like behavior. This finding is in accordance with the assumption that some antipsychotics are primarily effective against cognitive dysfunction in schizophrenia
    corecore