7,369 research outputs found

    CompHEP 4.4 - Automatic Computations from Lagrangians to Events

    Full text link
    We present a new version of the CompHEP program (version 4.4). We describe shortly new issues implemented in this version, namely, simplification of quark flavor combinatorics for the evaluation of hadronic processes, Les Houches Accord based CompHEP-PYTHIA interface, processing the color configurations of events, implementation of MSSM, symbolical and numerical batch modes, etc. We discuss how the CompHEP program is used for preparing event generators for various physical processes. We mention a few concrete physics examples for CompHEP based generators prepared for the LHC and Tevatron.Comment: The paper has been presented on IX International Workshop on Advanced Computing and Analysis Techniques in Physics Research December 1-5, 2003. KEK, Japan. 10 pages, 2 figure

    Hidden Grassmann structure in the XXZ model V: sine-Gordon model

    Full text link
    We study one-point functions of the sine-Gordon model on a cylinder. Our approach is based on a fermionic description of the space of descendent fields, developed in our previous works for conformal field theory and the sine-Gordon model on the plane. In the present paper we make an essential addition by giving a connection between various primary fields in terms of yet another kind of fermions. The one-point functions of primary fields and descendants are expressed in terms of a single function defined via the data from the thermodynamic Bethe Ansatz equations.Comment: 36 pages. Some corrections are done in latest version, especially in the subsection 10.

    Modified Tetrahedron Equations and Related 3D Integrable Models

    Full text link
    Using a modified version of the tetrahedron equations we construct a new family of NN-state three-dimensional integrable models with commuting two-layer transfer-matrices. We investigate a particular class of solutions to these equations and parameterize them in terms of elliptic functions. The corresponding models contain one free parameter kk -- an elliptic modulus.Comment: 26 pages, LaTeX fil

    Hidden Grassmann Structure in the XXZ Model IV: CFT limit

    Full text link
    The Grassmann structure of the critical XXZ spin chain is studied in the limit to conformal field theory. A new description of Virasoro Verma modules is proposed in terms of Zamolodchikov's integrals of motion and two families of fermionic creation operators. The exact relation to the usual Virasoro description is found up to level 6.Comment: 44 pages, 1 figure. Version 3: some corrections are don

    Prospects of mass measurements for neutral MSSM Higgs bosons in the intense-coupling regime at a Linear Collider

    Get PDF
    We analyze the prospects for detecting the three neutral Higgs bosons of the Minimal Supersymmetric extension of the Standard Model in the intense-coupling regime at e+e- colliders. Due to the small mass differences between the Higgs states in this regime and their relative large total decay widths, the discrimination between the particles is challenging at the LHC and in some cases even impossible. We propose to use the missing mass technique in the Higgs-strahlung process in e+e- collisions to distinguish between the two CP-even Higgs eigenstates h and H, relying on their b b-bar decay in the b,b-bar,l+,l- event sample. Ah and AH associated production is then studied in the 4b-jet event sample to probe the CP-odd A boson. At collider energies sqrt(s) = 300 GeV and an integrated luminosity of 500 fb-1, accuracies in the mass measurement of the CP-even Higgs bosons are expected to range from 100 to 300 MeV, while for the CP-odd A boson, accuracies of less than 500 MeV can be obtained.Comment: 12 pages, 15 Postscript figure

    Connecting lattice and relativistic models via conformal field theory

    Full text link
    We consider the quantum group invariant XXZ-model. In infrared limit it describes Conformal Field Theory with modified energy-momentum tensor. The correlation functions are related to solutions of level -4 of qKZ equations. We describe these solutions relating them to level 0 solutions. We further consider general matrix elements (form factors) containing local operators and asymptotic states. We explain that the formulae for solutions of qKZ equations suggest a decomposition of these matrix elements with respect to states of corresponding Conformal Field Theory .Comment: 22 pages, 1 figur

    Simplification of Flavour Combinatorics in the Evaluation of Hadronic Processes

    Get PDF
    A serious computational problem in the evaluation of hadronic collision processes is connected with the large number of partonic subprocesses included in the calculation. These are from the quark and gluon content of the initial hadrons, and from CKM quark mixing. For example, there are 180 subprocesses which contribute to the WW+2jets process, and 292 subprocesses in WW+3jets production at the LHC, even when quarks from only the first two generations are taken into account. We propose a simple modification of the rules for evaluation of cross sections and distributions, which avoids multiplication of channels from the mixture of quark states. The method is based on a unitary rotation of down quarks, thus, transporting the mixing matrix elements from vertices of Feynman diagrams to the parton distribution functions (PDF). As a result, one can calculate cross sections with significantly fewer subprocesses. For the example mentioned above, with the new rules, one need evaluate only 21 and 33 subprocesses respectively. The matrix elements of the subprocesses are calculated without quark mixing but with a modified PDF convolution which depends on the quark mixing angle, and on the topologies of gauge invariant classes of diagrams. The proposed method has been incorporated into the CompHEP program and checked with various examples.Comment: 10 pages (standard LaTeX code), 3 figures, 2 table
    • …
    corecore