29 research outputs found

    The Saliva Exposome for Monitoring of Individuals’ Health Trajectories

    Get PDF
    Bessonneau, V., Pawliszyn, J., & Rappaport, S. M. (2017). The Saliva Exposome for Monitoring of Individuals’ Health Trajectories. Environmental Health Perspectives, 125(7). https://doi.org/10.1289/EHP1011 Reproduced with permission from Environmental Health PerspectivesBackground: There is increasing evidence that environmental, rather than genetic, factors are the major causes of most chronic diseases. By measuring entire classes of chemicals in archived biospecimens, exposome-wide association studies (EWAS) are being conducted to investigate associations between a myriad of exposures received during life and chronic diseases. Objectives: Because the intraindividual variability in biomarker levels, arising from changes in environmental exposures from conception onwards, leads to attenuation of exposure–disease associations, we posit that saliva can be collected repeatedly in longitudinal studies to reduce exposure–measurement errors in EWAS. Methods: From the literature and an open-source saliva–metabolome database, we obtained concentrations of 1,233 chemicals that had been detected in saliva. We connected salivary metabolites with human metabolic pathways and PubMed Medical Subject Heading (MeSH) terms, and performed pathway enrichment and pathway topology analyses. Results: One hundred ninety-six salivary metabolites were mapped into 49 metabolic pathways and connected with human metabolic diseases, central nervous system diseases, and neoplasms. We found that the saliva exposome represents at least 14 metabolic pathways, including amino acid metabolism, TCA cycle, gluconeogenesis, glutathione metabolism, pantothenate and CoA biosynthesis, and butanoate metabolism. Conclusions: Saliva contains molecular information worthy of interrogation via EWAS. The simplicity of specimen collection suggests that saliva offers a practical alternative to blood for measurements that can be used to characterize individual exposomesNatural Sciences and Engineering Research Council of Canada Industrial Research program Canada Research Chairs program U.S. National Institutes of Health || grants P42ES04705 and R33CA19115

    Co- and post-translational translocation through the protein-conducting channel:analogous mechanisms at work?

    Get PDF
    Many proteins are translocated across, or integrated into, membranes. Both functions are fulfilled by the 'translocon/translocase', which contains a membrane-embedded proteinconducting channel (PCC) and associated soluble factors that drive translocation and insertion reactions using nucleotide triphosphates as fuel. This perspective focuses on reinterpreting existing experimental data in light of a recently proposed PCC model comprising a front-to-front dimer of SecY or Sec61 heterotrimeric complexes. In this new framework, we propose (i) a revised model for SRP-SR-mediated docking of the ribosome-nascent polypeptide to the PCC; (ii) that the dynamic interplay between protein substrate, soluble factors and PCC controls the opening and closing of a transmembrane channel across, and/or a lateral gate into, the membrane; and (iii) that co-and post-translational translocation, involving the ribosome and SecA, respectively, not only converge at the PCC but also use analogous mechanisms for coordinating protein translocation

    SecA, a remarkable nanomachine

    Get PDF
    Biological cells harbor a variety of molecular machines that carry out mechanical work at the nanoscale. One of these nanomachines is the bacterial motor protein SecA which translocates secretory proteins through the protein-conducting membrane channel SecYEG. SecA converts chemically stored energy in the form of ATP into a mechanical force to drive polypeptide transport through SecYEG and across the cytoplasmic membrane. In order to accommodate a translocating polypeptide chain and to release transmembrane segments of membrane proteins into the lipid bilayer, SecYEG needs to open its central channel and the lateral gate. Recent crystal structures provide a detailed insight into the rearrangements required for channel opening. Here, we review our current understanding of the mode of operation of the SecA motor protein in concert with the dynamic SecYEG channel. We conclude with a new model for SecA-mediated protein translocation that unifies previous conflicting data

    The action of cardiolipin on the bacterial translocon

    No full text
    Cardiolipin is an ever-present component of the energy-conserving inner membranes of bacteria and mitochondria. Its modulation of the structure and dynamism of the bilayer impacts on the activity of their resident proteins, as a number of studies have shown. Here we analyze the consequences cardiolipin has on the conformation, activity, and localization of the protein translocation machinery. Cardiolipin tightly associates with the SecYEG protein channel complex, whereupon it stabilizes the dimer, creates a high-affinity binding surface for the SecA ATPase, and stimulates ATP hydrolysis. In addition to the effects on the structure and function, the subcellular distribution of the complex is modified by the cardiolipin content of the membrane. Together, the results provide rare and comprehensive insights into the action of a phospholipid on an essential transport complex, which appears to be relevant to a broad range of energy-dependent reactions occurring at membranes
    corecore