16 research outputs found

    Laboratory demonstration of a prozone-like effect in HRP2-detecting malaria rapid diagnostic tests: implications for clinical management

    Get PDF
    Background: Malaria rapid diagnostic tests (RDTs) are now widely used for prompt on-site diagnosis in remote endemic areas where reliable microscopy is absent. Aberrant results, whereby negative test results occur at high parasite densities, have been variously reported for over a decade and have led to questions regarding the reliability of the tests in clinical use. Methods. In the first trial, serial dilutions of recombinant HRP2 antigen were tested on an HRP2-detectiing RDT. In a second trial, serial dilutions of culture-derived Plasmodium falciparum parasites were tested against three HRP2-detecting RDTs. Results: A prozone-like effect occurred in RDTs at a high concentration of the target antigen, histidine-rich protein-2 (above 15,000 ng/ml), a level that corresponds to more than 312000 parasites per L. Similar results were noted on three RDT products using dilutions of cultured parasites up to a parasite density of 25%. While reduced line intensity was observed, no false negative results occurred. Conclusions: These results suggest that false-negative malaria RDT results will rarely occur due to a prozone-like effect in high-density infections, and other causes are more likely. However, RDT line intensity is poorly indicative of parasite density in high-density infections and RDTs should, therefore, not be considered quantitative. Immediate management of suspected severe malaria should rely on clinical assessment or microscopy. Evaluation against high concentrations of antigen should be considered in malaria RDT product development and lot-release testing, to ensure that very weak or false negative results will not occur at antigen concentrations that might be seen clinically

    Accuracy of a rapid diagnostic test on the diagnosis of malaria infection and of malaria - attributable fever during low and high transmission season in Burkina Faso

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malaria management policies currently recommend that the treatment should only be administered after laboratory confirmation. Where microscopy is not available, rapid diagnostic tests (RDTs) are the usual alternative. Conclusive evidence is still lacking on the safety of a test-based strategy for children. Moreover, no formal attempt has been made to estimate RDTs accuracy on malaria-attributable fever. This study aims at estimating the accuracy of a RDT for the diagnosis of both malaria infection and malaria - attributable fever, in a region of Burkina Faso with a typically seasonal malaria transmission pattern.</p> <p>Methods</p> <p>Cross-sectional study. Subjects: all patients aged > 6 months consulting during the study periods. Gold standard for the diagnosis of malaria infection was microscopy. Gold standard for malaria-attributable fever was the number of fevers attributable to malaria, estimated by comparing parasite densities of febrile versus non-febrile subjects. Exclusion criteria: severe clinical condition needing urgent care.</p> <p>Results</p> <p>In the dry season, 186/852 patients with fever (22%) and 213/1,382 patients without fever (15%) had a <it>Plasmodium falciparum </it>infection. In the rainy season, this proportion was 841/1,317 (64%) and 623/1,669 (37%), respectively. The attributable fraction of fever to malaria was 11% and 69%, respectively. The RDT was positive in 113/400 (28.3%) fever cases in the dry season, and in 443/650 (68.2%) in the rainy season. In the dry season, the RDT sensitivity and specificity for malaria infection were 86% and 90% respectively. In the rainy season they were 94% and 78% respectively. In the dry season, the RDT sensitivity and specificity for malaria-attributable fever were 94% and 75%, the positive predictive value (PPV) was 9% and the negative predictive value (NPV) was 99.8%. In the rainy season the test sensitivity for malaria-attributable fever was 97% and specificity was 55%. The PPV ranged from 38% for adults to 82% for infants, while the NPV ranged from 84% for infants to over 99% for adults.</p> <p>Conclusions</p> <p>In the dry season the RDT has a low positive predictive value, but a very high negative predictive value for malaria-attributable fever. In the rainy season the negative test safely excludes malaria in adults but not in children.</p
    corecore