742 research outputs found

    Extended survival of Puccinia graminis f. sp. tritici urediniospores: implications for biosecurity and on-farm management

    Get PDF
    Puccinia graminis f. sp. tritici (Pgt), the causal organism of stem rust, is of global importance across wheat-growing countries. However, some epidemics commence without the obvious presence of ‘alternate’ or ‘green bridge’ hosts, suggesting urediniospores can survive in the absence of suitable host plants for many weeks. Testing a range of inert material types, including metals, plastics, fabrics and woods, highlighted a significant effect of material type and temperature on urediniospore viability (P < 0.001), with urediniospores remaining attached and viable on these materials (aluminium, paper, rubber, all fabric and all woods) for up to 365 days at 23/8 °C day/night. At 36/14 °C day/night, urediniospore viability was retained for a maximum of 300 days on denim and jute. Furthermore, at 45/15 °C day/night, urediniospores remained viable for a maximum of 180 days on cotton and jute. The frequency of recovery of attached urediniospores was also dependent upon the material type, with significant differences between materials in their abilities to retain urediniospores after washing (P < 0.001). Urediniospores recovered even after 300 or 365 days from the lower two temperature regimes successfully initiated infections of wheat seedlings. Results confirm the potential importance of inert materials as long-term carriers of viable Pgt urediniospores, highlighting risks of spread of new pathotypes and strains across wheat-growing regions, the significant biosecurity implications for contaminated carrier materials, and its likely survival across seasons without a host

    Long-term viability of the northern anthracnose pathogen, Kabatiella caulivora, facilitates its transportation and spread

    Get PDF
    The conidia and resting hyphae of the northern anthracnose pathogen of Trifolium species, Kabatiella caulivora, were effectively carried by, and maintained long-term viability on, a range of materials, including metals, fabrics, woods and plastics. Conidia and hyphae became thick-walled and melanized with time. There were significant (P < 0.001) differences in conidia/resting hyphae survival between carrier materials and between temperature regimes. At 23 °C/8 °C day/night, conidia and resting hyphae remained viable on steel, corrugated iron, galvanized steel, all tested fabrics, wood and random mixed materials for up to 8 months. At 36 °C/14 °C day/night, conidia and resting hyphae remained viable for up to 8 months, but only on cotton, denim, fleece, silk, leather, paper, plastic and all wood materials. At 45 °C/15 °C day/night, conidia and resting hyphae remained viable up to 8 months only on fleece wool, Eucalyptus marginata (jarrah wood) and paper. There were significant differences between carrier materials in their abilities to retain conidia and resting hyphae after washing (P < 0.001). Metabolic activity was confirmed for conidia and resting hyphae recovered after 8 months and K. caulivora colonies successfully re-established on potato dextrose agar. Findings confirmed the critical importance of materials as long-term carriers of viable K. caulivora conidia and resting hyphae, highlighting the potential for spread of a highly virulent K. caulivora race within and outside Australia via farming equipment, clothing and other associated materials. Results also have wider biosecurity implications for the transportation of fungal-infested carrier materials previously considered as low risk

    Exotic fungal spores in the Australian Plant Biosecurity context

    Get PDF
    This project aims to define the relative likelihood of, and means by which, exotic fungal spore incursions on or in different carrier materials can occur by assessing common pathogen species in Australia and likely entry pathways and develop effective methods of decontamination of such infested materials. In Australia, the risk of inadvertent introduction of exotic fungal pathogen particularly by spores is increasing. Many of these exotic fungal pathogens pose a threat to our agricultural, horticultural and natural ecosystems if introduced into Australia e.g. Ug99. This research will improve the current understanding of the different entry pathways of fungal pathogens to Australia. The research project will specifically focus on the role of different materials as fungal spore carriers and their effects on spore survivability using common fungal spores as a model to develop and apply prototype tools to detect the contamination of carrier materials with exotic fungal pathogen threats, and develop effective methods of decontamination of such contaminated materials

    severe insulin resistence in disguise: a familial case of reactive hypoglycemia associated with a novel heterozygous INSR mutation

    Get PDF
    AIM: Hypoglycemia in childhood is very rare and can be caused by genetic mutations or insulin-secreting neoplasms. Postprandial hypoglycemia has previously been associated with insulin receptor (INSR) gene mutations. We aimed to identify the cause of postprandial hypoglycemia in a 10-year-old boy. SUBJECTS: We studied the symptomatic proband and his apparently asymptomatic mother and elder brother. All of them were lean. METHODS: Metabolic screening of the proband included a 5-hour oral glucose tolerance test (OGTT), angio-magnetic resonance imaging, and 18 F-dihydroxyphenylalanine positron emission tomography/computed tomography imaging of the pancreas. INSR gene sequencing and in vitro functional studies of a novel INSR mutation were also undertaken. RESULTS: Fasting hyperinsulinemia was detected during metabolic screening, and 5-hour OGTT showed hypoglycemia at 240' in the proband, his mother, and brother. Pancreatic imaging showed no evidence of neoplasia. Acanthosis nigricans with high fasting insulin levels in the proband suggested severe insulin resistance and prompted INSR gene sequencing, which revealed the novel, heterozygous p.Phe1213Leu mutation in the patient and his family members. In vitro studies showed that this mutation severely impairs insulin receptor function by abolishing tyrosine kinase activity and downstream insulin signaling. CONCLUSIONS: The identification of etiological cause of hypoglycemia in childhood may be challenging. The combination of fasting hyperinsulinemia with acanthosis nigricans in a lean subject with hypoglycemia suggests severe insulin resistance and warrants INSR gene screening

    The Krüppel-like zinc finger protein Glis3 directly and indirectly activates insulin gene transcription

    Get PDF
    Glis3 is a member of the Krüppel-like family of transcription factors and is highly expressed in islet β cells. Mutations in GLIS3 cause the syndrome of neonatal diabetes and congenital hypothyroidism (NDH). Our aim was to examine the role of Glis3 in β cells, specifically with regard to regulation of insulin gene transcription. We demonstrate that insulin 2 (Ins2) mRNA expression in rat insulinoma 832/13 cells is markedly increased by wild-type Glis3 overexpression, but not by the NDH1 mutant. Furthermore, expression of both Ins1 and Ins2 mRNA is downregulated when Glis3 is knocked down by siRNA. Glis3 binds to the Ins2 promoter in the cell, detected by chromatin immunoprecipitation. Deletion analysis of Ins2 promoter identifies a sequence (5′-GTCCCCTGCTGTGAA-3′) from −255 to −241 as the Glis3 response element and binding occur specifically via the Glis3 zinc finger region as revealed by mobility shift assays. Moreover, Glis3 physically and functionally interacts with Pdx1, MafA and NeuroD1 to modulate Ins2 promoter activity. Glis3 also may indirectly affect insulin promoter activity through upregulation of MafA and downregulation of Nkx6-1. This study uncovers a role of Glis3 for regulation of insulin gene expression and expands our understanding of its role in the β cell

    Observation of the Decay Λ0b→Λ+cτ−¯ν

    Get PDF
    The first observation of the semileptonic b-baryon decay Λb0→Λc+τ-ν¯τ, with a significance of 6.1σ, is reported using a data sample corresponding to 3 fb-1 of integrated luminosity, collected by the LHCb experiment at center-of-mass energies of 7 and 8 TeV at the LHC. The τ- lepton is reconstructed in the hadronic decay to three charged pions. The ratio K=B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+π-π+π-) is measured to be 2.46±0.27±0.40, where the first uncertainty is statistical and the second systematic. The branching fraction B(Λb0→Λc+τ-ν¯τ)=(1.50±0.16±0.25±0.23)% is obtained, where the third uncertainty is from the external branching fraction of the normalization channel Λb0→Λc+π-π+π-. The ratio of semileptonic branching fractions R(Λc+)B(Λb0→Λc+τ-ν¯τ)/B(Λb0→Λc+μ-ν¯μ) is derived to be 0.242±0.026±0.040±0.059, where the external branching fraction uncertainty from the channel Λb0→Λc+μ-ν¯μ contributes to the last term. This result is in agreement with the standard model prediction

    The DAC system and associations with acute leukemias and myelodysplastic syndromes

    Get PDF
    Imbalances of histone acetyltransferase (HAT) and deacetylase activity (DAC) that result in deregulated gene expression are commonly observed in leukemias. These alterations provide the basis for novel therapeutic approaches that target the epigenetic mechanisms implicated in leukemogenesis. As the acetylation status of histones has been linked to transcriptional regulation of genes involved particularly in differentiation and apoptosis, DAC inhibitors (DACi) have attracted considerable attention for treatment of hematologic malignancies. DACi encompass a structurally diverse family of compounds that are being explored as single agents as well as in combination with chemotherapeutic drugs, small molecule inhibitors of signaling pathways and hypomethylating agents. While DACi have shown clear evidence of activity in acute myeloid leukemia, myelodysplastic syndromes and lymphoid malignancies, their precise role in treatment of these different entities remain to be elucidated. Successful development of these compounds as elements of novel targeted treatment strategies for leukemia will require that clinical studies be performed in conjunction with translational research including efforts to identify predictive biomarkers

    A study of CP violation in the decays B±→[K+K-π+π-]Dh± (h= K, π) and B±→[π+π-π+π-]Dh±

    Get PDF
    The first study of CP violation in the decay mode B±→[K+K-π+π-]Dh± , with h= K, π , is presented, exploiting a data sample of proton–proton collisions collected by the LHCb experiment that corresponds to an integrated luminosity of 9 \,fb - 1 . The analysis is performed in bins of phase space, which are optimised for sensitivity to local CP asymmetries. CP -violating observables that are sensitive to the angle γ of the Unitarity Triangle are determined. The analysis requires external information on charm-decay parameters, which are currently taken from an amplitude analysis of LHCb data, but can be updated in the future when direct measurements become available. Measurements are also performed of phase-space integrated observables for B±→[K+K-π+π-]Dh± and B±→[π+π-π+π-]Dh± decays
    corecore