5 research outputs found

    Health-related quality of life and a cost-utility simulation of adults in the UK with osteogenesis imperfecta, X-linked hypophosphatemia and fibrous dysplasia.

    Get PDF
    BACKGROUND: Health-related quality of life of adults with osteogenesis imperfecta (OI), fibrous dysplasia (FD) and X-linked hypophosphatemia (XLH) remains poorly described. The aim of this study was to describe the HRQoL of adults with osteogenesis imperfecta, fibrous dysplasia and X-linked hypophophataemia and perform a cost-utility simulation to calculate the maximum cost that a health care system would be willing to pay for a hypothetical treatment of a rare bone disease. RESULTS: Participants completed the EQ-5D-5 L questionnaire between September 2014 and March 2016. For the economic simulation, we considered a hypothetical treatment that would be applied to OI participants in the lower tertile of the health utility score. A total of 109 study participants fully completed the EQ-5D-5 L questionnaire (response rate 63%). Pain/discomfort was the most problematic domain for participants with all three diseases (FD 31%, XLH 25%, OI 16%). The economic simulation identified an expected treatment impact of +2.5 QALYs gained per person during the 10-year period, which led to a willing to pay of £14,355 annually for a health care system willing to pay up to £50,000 for each additional QALY gained by an intervention. CONCLUSIONS: This is the first study to quantitatively measure and compare the HRQoL of adults with OI, FD and XLH and the first to use such data to conduct an economic simulation leading to healthcare system willingness-to-pay estimates for treatment of musculoskeletal rare diseases at various cost-effectiveness thresholds

    Osteogenesis imperfecta

    Get PDF
    Skeletal deformity and bone fragility are the hallmarks of the brittle bone dysplasia osteogenesis imperfecta. The diagnosis of osteogenesis imperfecta usually depends on family history and clinical presentation characterized by a fracture (or fractures) during the prenatal period, at birth or in early childhood; genetic tests can confirm diagnosis. Osteogenesis imperfecta is caused by dominant autosomal mutations in the type I collagen coding genes (COL1A1 and COL1A2) in about 85% of individuals, affecting collagen quantity or structure. In the past decade, (mostly) recessive, dominant and X-linked defects in a wide variety of genes encoding proteins involved in type I collagen synthesis, processing, secretion and post-translational modification, as well as in proteins that regulate the differentiation and activity of bone-forming cells have been shown to cause osteogenesis imperfecta. The large number of causative genes has complicated the classic classification of the disease, and although a new genetic classification system is widely used, it is still debated. Phenotypic manifestations in many organs, in addition to bone, are reported, such as abnormalities in the cardiovascular and pulmonary systems, skin fragility, muscle weakness, hearing loss and dentinogenesis imperfecta. Management involves surgical and medical treatment of skeletal abnormalities, and treatment of other complications. More innovative approaches based on gene and cell therapy, and signalling pathway alterations, are under investigation
    corecore