19 research outputs found

    Microbiota and neurologic diseases : potential effects of probiotics

    Get PDF
    Background: The microbiota colonizing the gastrointestinal tract have been associated with both gastrointestinal and extra-gastrointestinal diseases. In recent years, considerable interest has been devoted to their role in the development of neurologic diseases, as many studies have described bidirectional communication between the central nervous system and the gut, the so-called "microbiota-gut-brain axis". Considering the ability of probiotics (i.e., live non-pathogenic microorganisms) to restore the normal microbial population and produce benefits for the host, their potential effects have been investigated in the context of neurologic diseases. The main aims of this review are to analyse the relationship between the gut microbiota and brain disorders and to evaluate the current evidence for the use of probiotics in the treatment and prevention of neurologic conditions. Discussion: Overall, trials involving animal models and adults have reported encouraging results, suggesting that the administration of probiotic strains may exert some prophylactic and therapeutic effects in a wide range of neurologic conditions. Studies involving children have mainly focused on autism spectrum disorder and have shown that probiotics seem to improve neuro behavioural symptoms. However, the available data are incomplete and far from conclusive. Conclusions: The potential usefulness of probiotics in preventing or treating neurologic diseases is becoming a topic of great interest. However, deeper studies are needed to understand which formulation, dosage and timing might represent the optimal regimen for each specific neurologic disease and what populations can benefit. Moreover, future trials should also consider the tolerability and safety of probiotics in patients with neurologic diseases

    Not all lactic acid bacteria are probiotics, …but some are

    No full text

    Aging decreases the abundance of retinoic acid (RAR) and triiodothyronine (TR) nuclear receptor mRNA in rat brain: effect of the administration of retinoids

    No full text
    International audienceAging is accompanied by troubles resulting from changes in hormonal and nutritional status. Therefore, the abundance of mRNA coding for triiodothyronine (TR) and retinoic acid (RA) nuclear receptors was studied in the brain of young, adult and aged (2.5, 6 and 24 months, respectively) rats. In the brain of aged rats, there was a lower abundance of TR and RAR mRNA and a lower activity of tissue transglutaminase (tTG), an enzyme the gene of which is a target for retinoids. Administration of RA in these rats restored TR and RAR mRNA and the activity of tTG in the brain. The importance of these observations to the function of the aged brain is discussed

    Aging decreases retinoic acid and triiodothyronine nuclear expression in rat liver: exogenous retinol and retinoic acid differentially modulate this decreased expression

    No full text
    International audienceThe expression of nuclear receptors of retinoic acid (RAR) and triiodothyronine (TR) was analyzed in the liver of rats aged 2.5 (young), 6 (adult) and 24 (aged) months. In aged rats, decreased binding properties, binding capacity (Cmax) and affinity (Ka), of nuclear receptors were observed. This resulted, at least in part, from decreased transcription of receptor genes in that the amount of their mRNA also decreased. Moreover, the activity of malic enzyme (ME) and tissue transglutaminase (tTG), whose genes are TR and RAR responsive, respectively, was reduced in aged rats. These results are in agreement with the decreased binding capacity of these receptors. An inducer-related increase of RAR and TR expression was observed 24 h after a single dose of retinoic acid administration (5 mg/kg), while retinol administration (retinyl palmitate, 13 mg/kg) was without incidence on nuclear receptor expression in aged rats

    Cellular retinol-binding protein I is essential for vitamin A homeostasis.

    No full text
    The gene encoding cellular retinol (ROL, vitA)-binding protein type I (CRBPI) has been inactivated. Mutant mice fed a vitA-enriched diet are healthy and fertile. They do not present any of the congenital abnormalities related to retinoic acid (RA) deficiency, indicating that CRBPI is not indispensable for RA synthesis. However, CRBPI deficiency results in an approximately 50% reduction of retinyl ester (RE) accumulation in hepatic stellate cells. This reduction is due to a decreased synthesis and a 6-fold faster turnover, which are not related to changes in the levels of RE metabolizing enzymes, but probably reflect an impaired delivery of ROL to lecithin:retinol acyltransferase. CRBPI-null mice fed a vitA-deficient diet for 5 months fully exhaust their RE stores. Thus, CRBPI is indispensable for efficient RE synthesis and storage, and its absence results in a waste of ROL that is asymptomatic in vitA-sufficient animals, but leads to a severe syndrome of vitA deficiency in animals fed a vitA-deficient diet
    corecore