50 research outputs found

    Death after smoking of fentanyl, 5F-ADB, 5F-MDMB-P7AICA and other synthetic cannabinoids with a bucket bong

    Get PDF
    Purpose: We report a case of a polydrug user who consumed various synthetic cannabinoids and fentanyl from a transdermal patch via a bucket bong. Toxicological results from postmortem matrices with special focus on synthetic cannabinoids are discussed in terms of their relevance to the death. Methods: The samples were analyzed by toxicological screening procedures involving immunoassays and gas chromatography–mass spectrometry (GC–MS) as well as quantitative analyses by means of GC–MS and high-performance liquid chromatography–tandem mass spectrometry (LC–MS/MS). Results: At the autopsy, coronary artery disease and signs of liver congestion were noted, in the absence of acute myocardial ischemic changes. Femoral blood concentrations of fentanyl and pregabalin were 14 ng/mL and 3,200 ng/mL, respectively. In addition, 2.7 ng/mL 5F-ADB and 13 ng/mL 5F-MDMB-P7AICA were detected together with relatively low amounts of 5 other synthetic cannabinoids in cardiac blood. A total number of up to 17 synthetic cannabinoids were detected in kidney, liver, urine and hair. Fentanyl and 5F-ADB were also detected in the water of the bucket bong. Conclusions: The cause of death could be attributed to an acute mixed intoxication by fentanyl and 5F-ADB (both Toxicological Significance Score (TSS) = 3) with a contribution of pregabalin and 5F-MDMB-P7AICA (TSS = 2), in a subject suffering from pre-existing heart damage. The most plausible mechanism of death consists in a respiratory depression. This case report demonstrates that use of opioids in combination with synthetic cannabinoids might be particularly dangerous

    A case of fatal multidrug intoxication involving flualprazolam: distribution in body fluids and solid tissues

    Get PDF
    Purpose Designer benzodiazepines (DBZDs) increasingly emerged on the novel psychoactive substance (NPS) market in the last few years. They are usually sold as readily available alternatives to prescription benzodiazepines (BZDs) or added to counterfeit medicines. BZDs are generally considered relatively safe drugs due to the low risk of serious acute adverse effects in mono-intoxication, though e.g., alprazolam seems to display an elevated risk of respiratory depression. Here we report on a fatal intoxication involving the novel DBZD flualprazolam. Methods A complete postmortem examination was performed. General unknown screenings and analysis of drugs of abuse were performed on postmortem samples by immunoassay, gas chromatography–mass spectrometry and liquid chromatog- raphy–mass spectrometry. The standard addition method was employed to quantify flualprazolam in postmortem blood and tissues. Finally, a toxicological significance score (TSS) was assigned. Results Flualprazolam was detected in heart serum (25.4 ng/mL) and peripheral blood (21.9 ng/mL) as well as in urine, stomach contents, brain, liver and kidney (65.2–323 ng/g). The cause of death was deemed as central nervous system (CNS) and respiratory depression with agonal aspiration of stomach contents, in the setting of a multiple drug intake. Given the concentration levels of the co-consumed CNS depressants, the contribution of flualprazolam to the death was considered likely (TSS of 3). Conclusions Our results support that highly potent DBZDs like flualprazolam carry an elevated risk for unintended toxic- ity, especially in association with other CNS depressants. A multidisciplinary evaluation of fatalities remains mandatory, especially when pharmacological/toxicological data on intoxicating compounds are lacking. To our knowledge this is the first report of flualprazolam concentrations in solid tissues in human

    Molecular Nanoscience and Engineering on Surfaces

    Get PDF
    Molecular engineering of low-dimensional materials exploiting controlled self-assembly and positioning of individual atoms or molecules at surfaces opens up new pathways to control matter at the nanoscale. Our research thus focuses on the study of functional molecules and supramolecular architectures on metal substrates. As principal experimental tools we employ low-temperature scanning tunneling microscopy and spectroscopy. Here we review recent studies in our lab at UBC: Controlled manipulation of single CO molecules, self-assembled biomolecular nanogratings on Ag(111) and their use for electron confinement, as well as the organisation, conformation, metalation and electronic structure of adsorbed porphyrins

    Zwitterionic Self-Assembly of L-Methionine Nanogratings on the Ag(111) Surface

    Get PDF
    The engineering of complex architectures from functional molecules on surfaces provides new pathways to control matter at the nanoscale. In this article, we present a combined study addressing the self-assembly of the amino acid L-methionine on Ag(111). Scanning tunneling microscopy data reveal spontaneous ordering in extended molecular chains oriented along high-symmetry substrate directions. At intermediate coverages, regular biomolecular gratings evolve whose periodicity can be tuned at the nanometer scale by varying the methionine surface concentration. Their characteristics and stability were confirmed by helium atomic scattering. X-ray photoemission spectroscopy and high-resolution scanning tunneling microscopy data reveal that the L-methionine chaining is mediated by zwitterionic coupling, accounting for both lateral links and molecular dimerization. This methionine molecular recognition scheme is reminiscent of sheet structures in amino acid crystals and was corroborated by molecular mechanics calculations. Our findings suggest that zwitterionic assembly of amino acids represents a general construction motif to achieve biomolecular nanoarchitectures on surfaces

    Chiral kagome lattice from simple ditopic molecular bricks

    Get PDF
    Self-assembly techniques allow for the fabrication of highly organized architectures with atomic-level precision. Here, we report on molecular-level scanning tunneling microscopy observations demonstrating the supramolecular engineering of complex, regular, and long-range ordered periodic networks on a surface atomic lattice using simple linear molecular bricks. The length variation of the employed de novo synthesized linear dicarbonitrile polyphenyl molecules translates to distinct changes of the bonding motifs that lead to hierarchic order phenomena and unexpected changes of the surface tessellations. The achieved 2D organic networks range from a close-packed chevron pattern via a rhombic network to a hitherto unobserved supramolecular chiral kagome lattice

    Phase I Hydroxylated Metabolites of the K2 Synthetic Cannabinoid JWH-018 Retain In Vitro and In Vivo Cannabinoid 1 Receptor Affinity and Activity

    Get PDF
    K2 products are synthetic cannabinoid-laced, marijuana-like drugs of abuse, use of which is often associated with clinical symptoms atypical of marijuana use, including hypertension, agitation, hallucinations, psychosis, seizures and panic attacks. JWH-018, a prevalent K2 synthetic cannabinoid, is structurally distinct from Δ(9)-THC, the main psychoactive ingredient in marijuana. Since even subtle structural differences can lead to differential metabolism, formation of novel, biologically active metabolites may be responsible for the distinct effects associated with K2 use. The present study proposes that K2's high adverse effect occurrence is due, at least in part, to distinct JWH-018 metabolite activity at the cannabinoid 1 receptor (CB1R).JWH-018, five potential monohydroxylated metabolites (M1-M5), and one carboxy metabolite (M6) were examined in mouse brain homogenates containing CB1Rs, first for CB1R affinity using a competition binding assay employing the cannabinoid receptor radioligand [(3)H]CP-55,940, and then for CB1R intrinsic efficacy using an [(35)S]GTPγS binding assay. JWH-018 and M1-M5 bound CB1Rs with high affinity, exhibiting K(i) values that were lower than or equivalent to Δ(9)-THC. These molecules also stimulated G-proteins with equal or greater efficacy relative to Δ(9)-THC, a CB1R partial agonist. Most importantly, JWH-018, M2, M3, and M5 produced full CB1R agonist levels of activation. CB1R-mediated activation was demonstrated by blockade with O-2050, a CB1R-selective neutral antagonist. Similar to Δ(9)-THC, JWH-018 and M1 produced a marked depression of locomotor activity and core body temperature in mice that were both blocked by the CB1R-preferring antagonist/inverse agonist AM251.Unlike metabolites of most drugs, the studied JWH-018 monohydroxylated compounds, but not the carboxy metabolite, retain in vitro and in vivo activity at CB1Rs. These observations, combined with higher CB1R affinity and activity relative to Δ(9)-THC, may contribute to the greater prevalence of adverse effects observed with JWH-018-containing products relative to cannabis
    corecore