767 research outputs found

    Search for new physics in multijet events with at least one photon and large missing transverse momentum in proton-proton collisions at 13 TeV

    Get PDF
    A search for new physics in final states consisting of at least one photon, multiple jets, and large missing transverse momentum is presented, using proton-proton collision events at a center-of-mass energy of 13 TeV. The data correspond to an integrated luminosity of 137 fb−1, recorded by the CMS experiment at the CERN LHC from 2016 to 2018. The events are divided into mutually exclusive bins characterized by the missing transverse momentum, the number of jets, the number of b-tagged jets, and jets consistent with the presence of hadronically decaying W, Z, or Higgs bosons. The observed data are found to be consistent with the prediction from standard model processes. The results are interpreted in the context of simplified models of pair production of supersymmetric particles via strong and electroweak interactions. Depending on the details of the signal models, gluinos and squarks of masses up to 2.35 and 1.43 TeV, respectively, and electroweakinos of masses up to 1.23 TeV are excluded at 95% confidence level

    Measurements of inclusive and differential cross sections for the Higgs boson production and decay to four-leptons in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    Measurements of the inclusive and differential fiducial cross sections for the Higgs boson production in the H → ZZ → 4ℓ (ℓ = e, ÎŒ) decay channel are presented. The results are obtained from the analysis of proton-proton collision data recorded by the CMS experiment at the CERN LHC at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. The measured inclusive fiducial cross section is 2.73 ± 0.26 fb, in agreement with the standard model expectation of 2.86 ± 0.1 fb. Differential cross sections are measured as a function of several kinematic observables sensitive to the Higgs boson production and decay to four leptons. A set of double-differential measurements is also performed, yielding a comprehensive characterization of the four leptons final state. Constraints on the Higgs boson trilinear coupling and on the bottom and charm quark coupling modifiers are derived from its transverse momentum distribution. All results are consistent with theoretical predictions from the standard model

    First measurement of the top quark pair production cross section in proton-proton collisions at s \sqrt{s} = 13.6 TeV

    Get PDF
    The first measurement of the top quark pair (ttÂŻ) production cross section in proton-proton collisions at s√ = 13.6 TeV is presented. Data recorded with the CMS detector at the CERN LHC in Summer 2022, corresponding to an integrated luminosity of 1.21 fb−1, are analyzed. Events are selected with one or two charged leptons (electrons or muons) and additional jets. A maximum likelihood fit is performed in event categories defined by the number and flavors of the leptons, the number of jets, and the number of jets identified as originating from b quarks. An inclusive ttÂŻ production cross section of 881 ± 23 (stat + syst) ± 20 (lumi) pb is measured, in agreement with the standard model prediction of 924+32−40 pb

    Observation of the Rare Decay of the η Meson to Four Muons

    Get PDF
    A search for the rare η→Ό+Ό−Ό+Ό− double-Dalitz decay is performed using a sample of proton-proton collisions, collected by the CMS experiment at the CERN LHC with high-rate muon triggers during 2017 and 2018 and corresponding to an integrated luminosity of 101  fb−1. A signal having a statistical significance well in excess of 5 standard deviations is observed. Using the η→Ό+Ό− decay as normalization, the branching fraction B(η→Ό+Ό−Ό+Ό−)=[5.0±0.8(stat)±0.7(syst)±0.7(B2ÎŒ)]×10−9 is measured, where the last term is the uncertainty in the normalization channel branching fraction. This work achieves an improved precision of over 5 orders of magnitude compared to previous results, leading to the first measurement of this branching fraction, which is found to agree with theoretical predictions

    Observation of four top quark production in proton-proton collisions at √s = 13 TeV

    Get PDF

    Search for a high-mass dimuon resonance produced in association with b quark jets at s \sqrt{s} = 13 TeV

    Get PDF

    Search for Scalar Leptoquarks Produced via τ-Lepton-Quark Scattering in pppp Collisions at s=13TeV\sqrt{s}=13 TeV

    Get PDF
    The first search for scalar leptoquarks produced in τ-lepton–quark collisions is presented. It is based on a set of proton-proton collision data recorded with the CMS detector at the LHC at a center-of-mass energy of 13 TeV corresponding to an integrated luminosity of 138  fb−1^{−1}. The reconstructed final state consists of a jet, significant missing transverse momentum, and a τ lepton reconstructed through its hadronic or leptonic decays. Limits are set on the product of the leptoquark production cross section and branching fraction and interpreted as exclusions in the plane of the leptoquark mass and the leptoquark-τ-quark coupling strength

    Search for new physics in high-mass diphoton events from proton-proton collisions at √s = 13 TeV

    Get PDF
    Results are presented from a search for new physics in high-mass diphoton events from proton-proton collisions at sqrt(s) = 13 TeV. The data set was collected in 2016–2018 with the CMS detector at the LHC and corresponds to an integrated luminosity of 138 fb−1 . Events with a diphoton invariant mass greater than 500 GeV are considered. Two diferent techniques are used to predict the standard model backgrounds: parametric fts to the smoothly-falling background and a frst-principles calculation of the standard model diphoton spectrum at next-to-next-to-leading order in perturbative quantum chromodynamics calculations. The frst technique is sensitive to resonant excesses while the second technique can identify broad diferences in the invariant mass shape. The data are used to constrain the production of heavy Higgs bosons, Randall-Sundrum gravitons, the large extra dimensions model of Arkani-Hamed, Dimopoulos, and Dvali (ADD), and the continuum clockwork mechanism. No statistically signifcant excess is observed. The present results are the strongest limits to date on ADD extra dimensions and RS gravitons with a coupling parameter greater than 0.1

    Search for long-lived heavy neutral leptons with lepton flavour conserving or violating decays to a jet and a charged lepton

    Get PDF
    A preprint version of the article is available at arXiv:2312.07484v3 [hep-ex], https://arxiv.org/abs/2312.07484 . Comments: Replaced with the published version. Added the journal reference and the DOI. All the figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-21-013 (CMS Public Pages)A search for long-lived heavy neutral leptons (HNLs) is presented, which considers the hadronic final state and coupling scenarios involving all three lepton generations in the 2-20 GeV HNL mass range for the first time. Events comprising two leptons (electrons or muons) and jets are analyzed in a data sample of proton-proton collisions, recorded with the CMS experiment at the CERN LHC at a centre-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 138 fb−1. A novel jet tagger, based on a deep neural network, has been developed to identify jets from an HNL decay using various features of the jet and its constituent particles. The network output can be used as a powerful discriminating tool to probe a broad range of HNL lifetimes and masses. Contributions from background processes are determined from data. No excess of events in data over the expected background is observed. Upper limits on the HNL production cross section are derived as functions of the HNL mass and the three coupling strengths VℓN to each lepton generation ℓ and presented as exclusion limits in the coupling-mass plane, as lower limits on the HNL lifetime, and on the HNL mass. In this search, the most stringent limit on the coupling strength is obtained for pure muon coupling scenarios; values of |VÎŒN|2 > 5 (4) × 10−7 are excluded for Dirac (Majorana) HNLs with a mass of 10 GeV at a confidence level of 95% that correspond to proper decay lengths of 17 (10) mm.SCOAP3

    Search for Wâ€Č bosons decaying to a top and a bottom quark in leptonic final states in proton-proton collisions at s \sqrt{s} = 13 TeV

    Get PDF
    A preprint version of the article is available at arXiv:2310.19893v1 [hep-ex], https://arxiv.org/abs/2310.19893v1 . Comments: Submitted to the Journal of High Energy Physics. All figures and tables can be found at https://cms-results.web.cern.ch/cms-results/public-results/publications/B2G-20-012 (CMS Public Pages). Report number: CMS-B2G-20-012, CERN-EP-2023-213.A search for W' bosons decaying to a top and a bottom quark in final states including an electron or a muon is performed with the CMS detector at the LHC. The analyzed data correspond to an integrated luminosity of 138 fb^{-1} of proton-proton collisions at a center-of-mass energy of 13 Tev. Good agreement with the standard model expectation is observed and no evidence for the existence of the W' boson is found over the mass range examined. The largest observed deviation from the standard model expectation is found for a W' boson mass (mWâ€Č) hypothesis of 3.8 TeV with a relative decay width of 1%, with a local (global) significance of 2.6 (2.0) standard deviations. Upper limits on the production cross sections of W' bosons decaying to a top and a bottom quark are set. Left- and right-handed W' bosons with mWâ€Č below 3.9 and 4.3 TeV, respectively, are excluded at the 95% confidence level, under the assumption that the new particle has a narrow decay width. Limits are also set for relative decay widths up to 30%. These are the most stringent limits to date on this W' boson decay channel.SCOAP3
    • 

    corecore