8 research outputs found

    Anti-HIV-1 Activity of a New Scorpion Venom Peptide Derivative Kn2-7

    Get PDF
    For over 30 years, HIV/AIDS has wreaked havoc in the world. In the absence of an effective vaccine for HIV, development of new anti-HIV agents is urgently needed. We previously identified the antiviral activities of the scorpion-venom-peptide-derived mucroporin-M1 for three RNA viruses (measles viruses, SARS-CoV, and H5N1). In this investigation, a panel of scorpion venom peptides and their derivatives were designed and chosen for assessment of their anti-HIV activities. A new scorpion venom peptide derivative Kn2-7 was identified as the most potent anti-HIV-1 peptide by screening assays with an EC50 value of 2.76 µg/ml (1.65 µM) and showed low cytotoxicity to host cells with a selective index (SI) of 13.93. Kn2-7 could inhibit all members of a standard reference panel of HIV-1 subtype B pseudotyped virus (PV) with CCR5-tropic and CXCR4-tropic NL4-3 PV strain. Furthermore, it also inhibited a CXCR4-tropic replication-competent strain of HIV-1 subtype B virus. Binding assay of Kn2-7 to HIV-1 PV by Octet Red system suggested the anti-HIV-1 activity was correlated with a direct interaction between Kn2-7 and HIV-1 envelope. These results demonstrated that peptide Kn2-7 could inhibit HIV-1 by direct interaction with viral particle and may become a promising candidate compound for further development of microbicide against HIV-1

    In vitro antiviral activity against herpes simplex virus in the abalone Haliotis laevigata

    No full text
    As viruses are extremely abundant in oceans, marine organisms may have evolved novel metabolites to protect themselves from viral infection. This research examined a well-known commercial gastropod, abalone (Haliotidae), which in Australia have recently experienced disease due to a neurotropic infection, abalone viral ganglioneuritis, caused by an abalone herpesvirus (AbHV). Due to the lack of molluscan cell lines for culturing AbHV, the antiviral activity of the abalone Haliotis laevigata was assessed against another neurotropic herpesvirus, herpes simplex virus type 1 (HSV-1), using a plaque assay. The concentration range at which abalone extract was used for antiviral testing caused minimal (%) mortality in Vero cells. Haemolymph (20 %, v/v) and lipophilic extract of the digestive gland (3000 μg ml−1) both substantially decreased the number and size of plaques. By adding haemolymph or lipophilic extract at different times during the plaque assay, it was shown that haemolymph inhibited viral infection at an early stage. In contrast, the antiviral effect of the lipophilic extract was greatest when added 1 h after infection, suggesting that it may act at an intracellular stage of infection. These results suggest that abalone have at least two antiviral compounds with different modes of action against viral infection, and provide a novel lead for marine antiviral drug discovery
    corecore