14 research outputs found
ISSR Analysis of Variability of Cultivated Form and Varieties of Pomegranate (Punica granatum L.) from Azerbaijan
The article presents the results of a study of genetic polymorphism for the first time carried out on
pomegranate varieties and forms of Azerbaijan origin using molecular markers. In total, 102 PCR fragments
were identified, of which 80 were polymorphic. The high level of polymorphism (75.5%) and the rich genetic
diversity were identified among the studied pomegranate collection. As a result of data analysis and on the
basis of the values of the basic parameters (PIC, EMR, MI, RP, MRP) determining informativeness of
markers, all 14 ISSR primers were suitable for genotyping pomegranate accessions. The most effective markers
(UBC808, UBC811, UBC834, and UBC840) were identified among the set of primers tested. A dendrogram
was constructed on the basis of the data obtained, which made it possible to group genotypes into 16
major clusters. The genetic similarity index ranged from 0.032 to 0.94. The study of the genetic relationship
of different pomegranate varieties confirms the effectiveness of the ISSR method, which makes it possible to
determine the level of genetic diversity, as well as to establish the relationship among the studied pomegranate
accessions
Adapting Agriculture to Climate Change: A Synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across Five Continents
The Adapting Agriculture to Climate Change Project set out to improve the diversity,
quantity, and accessibility of germplasm collections of crop wild relatives (CWR). Between 2013 and
2018, partners in 25 countries, heirs to the globetrotting legacy of Nikolai Vavilov, undertook seed
collecting expeditions targeting CWR of 28 crops of global significance for agriculture. Here, we
describe the implementation of the 25 national collecting programs and present the key results. A total
of 4587 unique seed samples from at least 355 CWR taxa were collected, conserved ex situ, safety
duplicated in national and international genebanks, and made available through the Multilateral
System (MLS) of the International Treaty on Plant Genetic Resources for Food and Agriculture (Plant
Treaty). Collections of CWR were made for all 28 targeted crops. Potato and eggplant were the most
collected genepools, although the greatest number of primary genepool collections were made for
rice. Overall, alfalfa, Bambara groundnut, grass pea and wheat were the genepools for which targets
were best achieved. Several of the newly collected samples have already been used in pre-breeding
programs to adapt crops to future challenges.info:eu-repo/semantics/publishedVersio
Adapting agriculture to climate change: a synopsis of Coordinated National Crop Wild Relative Seed Collecting Programs across five continents.
Na publicação: Marcelo B. Medeiros
The nature of the ligand's side chain interacting with the S1'-subsite of metallocarboxypeptidase T (from Thermoactinomyces vulgaris) determines the geometry of the tetrahedral transition complex.
The carboxypeptidase T (CPT) from Thermoactinomyces vulgaris has an active site structure and 3D organization similar to pancreatic carboxypeptidases A and B (CPA and CPB), but differs in broader substrate specificity. The crystal structures of CPT complexes with the transition state analogs N-sulfamoyl-L-leucine and N-sulfamoyl-L-glutamate (SLeu and SGlu) were determined and compared with previously determined structures of CPT complexes with N-sulfamoyl-L-arginine and N-sulfamoyl-L-phenylalanine (SArg and SPhe). The conformations of residues Tyr255 and Glu270, the distances between these residues and the corresponding ligand groups, and the Zn-S gap between the zinc ion and the sulfur atom in the ligand's sulfamoyl group that simulates a distance between the zinc ion and the tetrahedral sp3-hybridized carbon atom of the converted peptide bond, vary depending on the nature of the side chain in the substrate's C-terminus. The increasing affinity of CPT with the transition state analogs in the order SGlu, SArg, SPhe, SLeu correlates well with a decreasing Zn-S gap in these complexes and the increasing efficiency of CPT-catalyzed hydrolysis of the corresponding tripeptide substrates (ZAAL > ZAAF > ZAAR > ZAAE). Thus, the side chain of the ligand that interacts with the primary specificity pocket of CPT, determines the geometry of the transition complex, the relative orientation of the bond to be cleaved by the catalytic groups of the active site and the catalytic properties of the enzyme. In the case of CPB, the relative orientation of the catalytic amino acid residues, as well as the distance between Glu270 and SArg/SPhe, is much less dependent on the nature of the corresponding side chain of the substrate. The influence of the nature of the substrate side chain on the structural organization of the transition state determines catalytic activity and broad substrate specificity of the carboxypeptidase T