47 research outputs found

    iRODS metadata management for a cancer genome analysis workflow

    Get PDF
    Background: The massive amounts of data from next generation sequencing (NGS) methods pose various challenges with respect to data security, storage and metadata management. While there is a broad range of data analysis pipelines, these challenges remain largely unaddressed to date. Results: We describe the integration of the open-source metadata management system iRODS (Integrated Rule-Oriented Data System) with a cancer genome analysis pipeline in a high performance computing environment. The system allows for customized metadata attributes as well as fine-grained protection rules and is augmented by a user-friendly front-end for metadata input. This results in a robust, efficient end-to-end workflow under consideration of data security, central storage and unified metadata information. Conclusions: Integrating iRODS with an NGS data analysis pipeline is a suitable method for addressing the challenges of data security, storage and metadata management in NGS environments

    THz porous fibers: design, fabrication and experimental characterization

    Get PDF
    Porous fibers have been identified as a means of achieving low losses, low dispersion and high birefringence among THz polymer fibers. By exploiting optical fiber fabrication techniques, two types of THz polymer porous fibers--spider-web and rectangular porous fibers--with 57% and 65% porosity have been fabricated. The effective refractive index measured by terahertz time domain spectroscopy shows a good agreement between the theoretical and experimental results indicating a lower dispersion for THz porous fiber compared to THz microwires. A birefringence of 0.012 at 0.65 THz is also reported for rectangular porous fiber.Shaghik Atakaramians, Shahraam Afshar V., Heike Ebendorff-Heidepriem, Michael Nagel, Bernd M. Fischer, Derek Abbott and Tanya M. Monr

    Insights into the accuracy of social scientists' forecasts of societal change

    Get PDF
    How well can social scientists predict societal change, and what processes underlie their predictions? To answer these questions, we ran two forecasting tournaments testing the accuracy of predictions of societal change in domains commonly studied in the social sciences: ideological preferences, political polarization, life satisfaction, sentiment on social media, and gender–career and racial bias. After we provided them with historical trend data on the relevant domain, social scientists submitted pre-registered monthly forecasts for a year (Tournament 1; N = 86 teams and 359 forecasts), with an opportunity to update forecasts on the basis of new data six months later (Tournament 2; N = 120 teams and 546 forecasts). Benchmarking forecasting accuracy revealed that social scientists’ forecasts were on average no more accurate than those of simple statistical models (historical means, random walks or linear regressions) or the aggregate forecasts of a sample from the general public (N = 802). However, scientists were more accurate if they had scientific expertise in a prediction domain, were interdisciplinary, used simpler models and based predictions on prior data
    corecore