13 research outputs found

    Screening Current-Induced Field and Field Drift Study in HTS coils using T-A homogenous model

    Get PDF
    The emergence of second generation (2G) high-temperature superconductor (HTS) tapes has favored the development of HTS magnets for their applications in areas such as NMR, MRI and high field magnets. The screening current-induced field and the field drift are two major problems hindering the use of HTS tapes in the mentioned areas. Both problems are caused by the screening current, then it is necessary to have a modeling strategy capable to estimate such phenomena. Thus far, the H formulation has been the most successful and used approach to model medium-size systems (hundreds of tapes). However, its application to large-scale systems is still impaired by excessive computation times and memory requirements. Homogenization and multi-scaling strategies have been successfully implemented to increase the computational efficiency. In this contribution, we show that using the homogenization technique with the recently developed T-A formulation allows reducing the computation time and the amount of memory up to the point that real-time simulations of slow ramping cycles of large-scale systems are possible. The T-A homogeneous model also allows systematically investigating the screening current using numerical simulations

    Optimization of the Superconducting Linear Magnetic Bearing of a Maglev Vehicle

    Full text link
    Considering the need for cost/performance prediction and optimization of superconducting maglev vehicles, we develop and validate here a 3D finite element model to simulate superconducting linear magnetic bearings. Then we reduce the 3D model to a 2D model in order to decrease the computing time. This allows us to perform in a reasonable time a stochastic optimization considering the superconductor properties and the vehicle operation. We look for the permanent magnet guideway geometry that minimizes the cost and maximizes the lateral force during a displacement sequence, with a constraint on the minimum levitation force. The displacement sequence reproduces a regular maglev vehicle operation with both vertical and lateral movements. For the sake of comparison, our reference is the SupraTrans prototype bearing. The results of the optimization suggest that the bearing cost could be substantially reduced, while keeping the same performances as the initial design. Alternatively, the performances could be significantly improved for the same original cost
    corecore