204 research outputs found

    Topological defects and misfit strain in magnetic stripe domains of lateral multilayers with perpendicular magnetic anisotropy

    Get PDF
    Stripe domains are studied in perpendicular magnetic anisotropy films nanostructured with a periodic thickness modulation that induces the lateral modulation of both stripe periods and inplane magnetization. The resulting system is the 2D equivalent of a strained superlattice with properties controlled by interfacial misfit strain within the magnetic stripe structure and shape anisotropy. This allows us to observe, experimentally for the first time, the continuous structural transformation of a grain boundary in this 2D magnetic crystal in the whole angular range. The magnetization reversal process can be tailored through the effect of misfit strain due to the coupling between disclinations in the magnetic stripe pattern and domain walls in the in-plane magnetization configuration

    Effectiveness of HIIT compared to moderate continuous training in improving vascular parameters in inactive adults

    Get PDF
    Background: Strong evidence shows that physical inactivity increases the risk of many adverse health conditions, including major non-communicable diseases, such as cardiovascular disease (CVD), metabolic syndrome, and breast and colon cancers, and shortens life expectancy. We aimed to determine the effects of moderate (MCT)- versus high-intensity interval training (HIT) on vascular function parameters in physically inactive adults. We hypothesized that individualized HIT prescription would improve the vascular function parameters more than the MCT in a greater proportion of individuals. Methods: Twenty-one inactive adults were randomly allocated to receive either MCT group (60-75% of their heart rate reserve, [HRR] or HIT group (4 min at 85-95% of peak HRR), 3 days a week for 12 weeks. Vascular function (brachial artery flow-mediated dilation, FMD [%], normalized brachial artery flow-mediated dilation, FMDn [%], aortic pulse wave velocity, PWV [m·s - 1 ], AIx, augmentation index: aortic and brachial [%]), were measured at baseline and over 12 weeks of training. In order for a participant to be considered a responder to improvements in vascular function parameters (FMDn and PWV), the typical error was calculated in a favorable direction. Results: FMD changed by - 1.0% (SE 2.1, d = 0.388) in the MCT group, and + 1.8% (SE 1.8, d = 0.699) in the HIT group (no significant difference between groups: 2.9% [95% CI, - 3.0 to 8.8]. PWV changed by + 0.1 m·s - 1 (SE 0.2, d = 0.087) in the MCT group but decreased by - 0.4 m·s - 1 in the HIT group (SE 0.2, d = 0.497), with significant difference between groups: - 0.4 [95% CI, - 0.2 to - 0.7]. There was not a significant difference in the prevalence of no-responder for FMD (%) between the MCT and HIT groups (66% versus 36%, P = 0.157). Regarding PWV (m·s - 1 ), an analysis showed that the prevalence of no-responder was 77% (7 cases) in the MCT group and 45% (5 cases) in the HIT group (P = 0.114). Conclusions: Under the conditions of the present study, both groups experienced changed in vascular function parameters. Compared to MCT group, HIT is more efficacious for improving FMD and decreasing PWV, in physically inactive adults. Trial registration: ClinicalTrials.gov NCT02738385 registered on 23 March 2016. © 2019 The Author(s)

    Tuning topological defects in magnetic stripe domains of lateral multilayers with perpendicular magnetic anisotropy

    Get PDF
    Resumen del póster presentado a la VIII Edición de la Reunión Bienal del Grupo Especializado de Física del Estado Sólido de la Real Sociedad Española de Física celebrada del en Ciudad Real del 22 al 24 de enero de 2014.Peer Reviewe

    Reconfigurable spin-wave propagation in magnetic stripe domains in hybrid system

    Get PDF
    Resumen del trabajo presentado a la INTERMAG Conference - IEEE International Magnetics, celebrada on-line del 26 al 30 de abril de 2021.Very recently magnetic stripe domains, characterized by alternating up and down out-of-plane orientation of the magnetization, have received great interest due to the possibility to use stripe patterns to manipulate spin-wave (SW) propagation as in artificial magnonic crystals. In this work, we demonstrate the control of the SW propagation by using reconfigurable regular stripe-pattern domain structure in the hybrid system. The investigated system consists of 64-nm-thick NdCo layer and 10-nm-thick NiFe layer, coupled through an Al layer of different thicknesses. Magnetic force microscopy (MFM) measurements show that, due to the perpendicular magnetic anisotropy of the NdCo film, the system develops stripe domains aligned with the last in-plane saturation direction. The domain pattern is found to have a period of about 140 nm, which is almost independent on the thickness of the Al layer. The magnetization reversal of the trilayer system was investigated by vibrating sample magnetometer, showing that the hysteresis loop is characterized by a two-step process, due to the different coercivity of the NiFe and NdCo films. Detailed analysis of the hysteresis loops along with micromagnetic simulations indicates that the stray magnetic field coming from the NdCo layer induces a regular domain structure also in the NiFe layer, which is tuned by the thickness of Al spacer. In addition, upon reversing the applied magnetic field, an antiparallel state, characterized by an antiparallel alignment of the magnetization component parallel to the domain axis in the NdCo and NiFe stripes, is formed. Then, Brillouin light scattering spectroscopy has been used to measure the spectra of the SWs propagating in the direction perpendicular to stripe domains for the parallel and the antiparallel state. For both configurations, the dispersion relation shows a strongly nonreciprocal mode. However, in the parallel state SWs propagating with positive and negative wavevector are both characterized by a positive dispersion, while in the reversed state SWs propagating with negative wavevector show a negative dispersion. The above experimental results have been satisfactorily reproduced by numerical simulations. The latter show that the detected SW mode is mainly localized in the NiFe layer and its frequency nonreciprocity can be ascribed to the static magnetization configuration as well as to the interaction with the NdCo induced by the SWs via the dynamic stray field.PID2019-104604RBPeer reviewe

    Very high energy particle acceleration powered by the jets of the microquasar SS 433

    Full text link
    SS 433 is a binary system containing a supergiant star that is overflowing its Roche lobe with matter accreting onto a compact object (either a black hole or neutron star). Two jets of ionized matter with a bulk velocity of 0.26c\sim0.26c extend from the binary, perpendicular to the line of sight, and terminate inside W50, a supernova remnant that is being distorted by the jets. SS 433 differs from other microquasars in that the accretion is believed to be super-Eddington, and the luminosity of the system is 1040\sim10^{40} erg s1^{-1}. The lobes of W50 in which the jets terminate, about 40 pc from the central source, are expected to accelerate charged particles, and indeed radio and X-ray emission consistent with electron synchrotron emission in a magnetic field have been observed. At higher energies (>100 GeV), the particle fluxes of γ\gamma rays from X-ray hotspots around SS 433 have been reported as flux upper limits. In this energy regime, it has been unclear whether the emission is dominated by electrons that are interacting with photons from the cosmic microwave background through inverse-Compton scattering or by protons interacting with the ambient gas. Here we report TeV γ\gamma-ray observations of the SS 433/W50 system where the lobes are spatially resolved. The TeV emission is localized to structures in the lobes, far from the center of the system where the jets are formed. We have measured photon energies of at least 25 TeV, and these are certainly not Doppler boosted, because of the viewing geometry. We conclude that the emission from radio to TeV energies is consistent with a single population of electrons with energies extending to at least hundreds of TeV in a magnetic field of 16\sim16~micro-Gauss.Comment: Preprint version of Nature paper. Contacts: S. BenZvi, B. Dingus, K. Fang, C.D. Rho , H. Zhang, H. Zho
    corecore