30 research outputs found

    Regulation of the functional expression of membrane transporters in hepatocytic and lung cells exposed to extracts of diesel particulates

    No full text
    Les transporteurs membranaires jouent un rôle primordial dans la pharmacocinétique de médicaments mais aussi dans le transport de composés endogènes. La maîtrise de modèle in vitro permettant d’évaluer leur implication dans des interactions médicamenteuses, notamment au niveau hépatique, est donc primordiale. L’utilisation de ces modèles permettra aussi de déterminer l’impact potentiel de contaminants environnementaux, comme les particules diesel, sur l’expression fonctionnelle de transporteurs. Nos résultats démontrent la fiabilité de modèles hépatocytaires (hépatocytes et cellules d’hépatome HepaRG) en culture monocouche pour l’étude du transport membranaire de médicaments. Grâce à ces modèles, nous avons mis en évidence que des extraits de particules diesel (DEPe) peuvent modifier l’expression et/ou la fonction de transporteurs membranaires hépatiques, les Organic Anion Polypeptide Transporter (OATP) et les Multidrug Resistance associated Protein (MRP). Au niveau pulmonaire, les DEPe peuvent aussi augmenter l’expression du complexe LAT1/CD98hc, un complexe protéique de transport d’acides aminés souvent associé à de mauvais pronostics dans les cas de cancer du poumon. En conclusion, nos résultats mettent en évidence que les DEPe peuvent intervenir dans la régulation de l’activité et de l’expression de transporteurs membranaires tant au niveau hépatique qu’au niveau pulmonaire.Membrane transporters play a major role in the pharmacokinetic of drugs and in the transport of endogenous compounds. The development of in vitro models for the study of their expression and activity is therefore important to consider, notably for analyzing their interactions with drugs or environmental contaminants such as diesel exhaust particles. Our results demonstrated the reliability of hepatocytic cells (hepatocytes and highly differentiated hepatoma HepaRG cells) in monolayer culture for the study of membrane transport of drugs. Using these models allowed us to demonstrate that extracts of diesel exhaust particles (DEPe) can alter the expression and / or function of major liver transporters such as organic anion transporting polypeptides (OATP) and Protein Multidrug associated Resistance (MRP). In lung cells, DEPe can increase the expression of complex LAT1 / CD98hc a protein complex, that is associated with poor prognosis in lung cancer. In conclusion, our results demonstrated that DEPe can regulate activity and expression of membrane transporters at hepatic and lung level

    Carrier-mediated uptake of clonidine in cultured human lung cells

    No full text
    International audienceThe lung is a preferential organ site for accumulation of lipophilic basic amine drugs, so-called pneumophilic drugs and belonging to various pharmacological classes, which can result in lung toxicity. In order to investigate the mechanism involved in such pulmonary accumulation of drugs, uptake of clonidine, used here as a prototypical basic amine drug, was characterized in cultured human lung cells. Clonidine accumulation in lung alveolar A549 cells was found to be temperature- and pH-dependent; it was saturable, with a Michaelis-Menten affinity constant (Km) value of 569.4 μM. Various pneumophilic drugs, including amitriptyline, verapamil, propranolol, chlorpromazine, imipramine, and quinidine, markedly cis-inhibited clonidine uptake in A549 cells, in a dose-dependent manner for at least some of them. They additionally trans-stimulated clonidine efflux from A549 cells, thus suggesting that they are substrates for the putative clonidine transporter. In addition to alveolar A549 cells, bronchial epithelial BEAS-2B cells as well as lung endothelial HULEC-5a cells were found to exhibit clonidine accumulation abrogated by amitriptyline, verapamil, and chlorpromazine. Taken together, these data likely provided evidence for carrier-mediated uptake of clonidine in human lung cells. This carrier, which remains to be molecularly identified, interacts with various pneumophilic drugs, suggesting that it may contribute to lung accumulation of these drugs in a notable way

    Implication of human drug transporters to toxicokinetics and toxicity of pesticides

    No full text
    International audienceHuman membrane drug transporters are recognized as major actors of pharmacokinetics. Pesticides also interact with human drug transporters, which may have consequences for pesticide toxicokinetics and toxicity. The present review summarizes key findings about this topic. In vitro assays have demonstrated that some pesticides, belonging to various chemical classes, modulate drug transporter activity, regulate transporter expression and/or are substrates, thus bringing the proof of concept for pesticide-transporter relationships. The expected low human concentration of pesticides in response to environmental exposure constitutes a key-parameter to be kept in mind for judging the in vivo relevance of such pesticide-transporter interactions and their consequences for human health. Existing data about interactions of pesticides with drug transporters remain, however, rather sparse; more extensive and systematic characterization of pesticide-transporter relationships, through the use of high throughput in vitro assays and/or in silico methods, is, therefore, required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and physiological and pathological factors governing drug transporter expression may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity for humans

    The JAK1/2 Inhibitor Ruxolitinib Reverses Interleukin-6-Mediated Suppression of Drug-Detoxifying Proteins in Cultured Human Hepatocytes

    No full text
    International audienceThe inflammatory cytokine interleukin (IL)-6, which basically activates the Janus kinase (JAK)/ signal transducer and activator of transcription (STAT) signaling pathway, is well known to repress expression of hepatic cytochromes P-450 (P450s) and transporters. Therapeutic proteins, like monoclonal antibodies targeting IL-6 or its receptor, have consequently been demonstrated to restore full hepatic detoxification capacity, which results in inflammatory disease-related drug-drug interactions (idDDIs). In the present study, we investigated whether ruxolitinib, a small drug acting as a JAK1/2 inhibitor and currently used in the treatment of myeloproliferative neoplasms, may also counteract the repressing effects of IL-6 toward hepatic detoxifying systems. Ruxolitinib was found to fully inhibit IL-6-mediated repression of P450 (CYP1A2, CYP2B6, and CYP3A4) and transporter (NTCP, OATP1B1, and OCT1) mRNA levels in primary human hepatocytes and differentiated hepatoma HepaRG cells. Such effects were dose-dependent, with ruxolitinib EC50 values around 1.0-1.2 μM and thus close to ruxolitinib plasma levels that can be reached in patients. Moreover, they were associated with concomitant restoration of P450 and drug transporter activities in IL-6-exposed HepaRG cells. By contrast, ruxolitinib failed to suppress the repression of drug-detoxifying protein mRNA levels caused by IL-1β The JAK inhibitor and anti-rheumatoid arthritis compound tofacitinib was additionally found to reverse IL-6-mediated suppression of P450 and transporter mRNA expressions. Taken together, our results demonstrated that small drugs acting as JAK inhibitors, like ruxolitinib, counteract IL-6-mediated repression of drug-metabolizing enzymes and drug transporters in cultured human hepatocytes. These JAK inhibitors may consequently be hypothesized to restore hepatic detoxification capacity for patients suffering from inflammatory diseases, which may in turn cause idDDIs

    Analysis of Sinusoidal Drug Uptake Transporter Activities in Primary Human Hepatocytes

    No full text
    International audienc

    Cigarette smoke condensate alters Saccharomyces cerevisiae efflux transporter mRNA and activity and increases caffeine toxicity

    No full text
    International audienceIn animals, cigarette smoke may alter pharmacokinetics by altering activity and expression of ABC drug transporters. We previously demonstrated that cigarette smoke condensate (CSC) impairs activity and expression of several hepatic ABC drug transporters which mediate toxicant efflux. However, CSC effects on efflux transporters are still unknown in Saccharomyces cerevisiae which resists diverse chemical stresses, by inducing pleiotropic drug resistance (PDR) genes among others. The yeast ABC transporters are functionally and structurally homologous to the mammalian ones. In this study, Saccharomyces cerevisiae exposure to CSC for 15 min caused a dose-dependent inhibition of rhodamine 123 efflux, whereas a longer exposure (3 h) induced mRNA expression of the ABC PDR efflux pumps Pdr5, Snq2, Pdr 10 and Pdr15, and of Tpo1, a member of the major facilitator superfamily (MFS). CSC also increased toxicity of caffeine, which is handled by two PDR transporters, Pdr5 and Snq2. Taken together, these data demonstrated that yeast efflux transporters are targets of cigarette smoke chemicals, and that Saccharomyces cerevisiae may cope with CSC-induced stress, including the initial efflux inhibition, by induction of the mRNA of several plasma membrane PDR and MFS efflux transporters. Saccharomyces cerevisiae is therefore a valid model to investigate pollutant effects on ABC and MFS transporters

    Differential interactions of the beta-lactam cloxacillin with human renal organic anion transporters (OATs)

    No full text
    International audienceThe beta-lactam penicillin antibiotic cloxacillin (CLX) presents wide inter-individual pharmacokinetics variability. To better understand its molecular basis, the precise identification of the detoxifying actors involved in CLX disposition and elimination would be useful, notably with respect to renal secretion known to play a notable role in CLX elimination. The present study was consequently designed to analyze the interactions of CLX with the solute carrier transporters organic anion transporter (OAT) 1 and OAT3, implicated in tubular secretion through mediating drug entry at the basolateral pole of renal proximal cells. CLX was first shown to block OAT1 and OAT3 activity in cultured OAT-overexpressing HEK293 cells. Half maximal inhibitory concentration (IC50) value for OAT3 (13 mu m) was however much lower than that for OAT1 (560 mu m); clinical inhibition of OAT activity and drug-drug interactions may consequently be predicted for OAT3, but not OAT1. OAT3, unlike OAT1, was next shown to mediate CLX uptake in OAT-overexpressing HEK293 cells. Kinetic parameters for this OAT3-mediated transport of CLX (K-m = 10.7 mu m) were consistent with a possible in vivo saturation of this process for high CLX plasma concentrations. OAT3 is consequently likely to play a pivotal role in renal CLX secretion and consequently in total renal CLX elimination, owing to the low plasma unbound fraction of the antibiotic. OAT3 genetic polymorphisms as well as co-administered drugs inhibiting in vivo OAT3 activity may therefore be considered as potential sources of CLX pharmacokinetics variability

    Interactions of pesticides with membrane drug transporters implications for toxicokinetics and toxicity

    No full text
    International audienceDrug transporters are now recognized as major actors of pharmacokinetics. They are also likely implicated in toxicokinetics and toxicology of environmental pollutants, notably pesticides, to which humans are widely exposed and which are known to exert various deleterious effects toward health. Interactions of pesticides with drug transporters are therefore important to consider. Areas covered: This review provides an overview of the interactions of pesticides with membrane drug transporters, i.e. inhibition of their activity, regulation of their expression, and handling of pesticides. Consequences for toxicokinetics and toxicity of pesticides are additionally summarized and discussed. Expert opinion: Some pesticides belonging to several chemical classes, such as organochlorine, pyrethroid, and organophosphorus pesticides, have been demonstrated to interact with various uptake and efflux drug transporters, including the efflux pump P-glycoprotein (P-gp) and the uptake organic cation transporters (OCTs). This provides proof of the concept that pesticide-transporter relationships merit attention. More extensive and systematic characterization of pesticide-transporter relationships, possibly through the use of in silico methods, is however likely required. In addition, consideration of transporter polymorphisms, pesticide mixture effects, and realistic pesticide concentrations reached in humans may help better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity

    Inhibition of canalicular and sinusoidal taurocholate efflux by cholestatic drugs in human hepatoma HepaRG cells

    No full text
    International audienceHepaRG cells are highly-differentiated human hepatoma cells, which are increasingly recognized as a convenient cellular model for in vitro evaluation of hepatic metabolism, transport and/or toxicity of drugs. The present study was designed to evaluate whether HepaRG cells can also be useful for studying drug-mediated inhibition of canalicular and/or sinusoidal hepatic efflux of bile acids, which constitutes a major mechanism of drug-induced liver toxicity (DILI). For this purpose, HepaRG cells, initially loaded with the bile acid taurocholate (TC), were re-incubated in TC-free transport assay medium, in the presence or absence of calcium or drugs, before analysis of TC retention. This method allowed to objectivise and quantitatively measure biliary and sinusoidal efflux of TC from HepaRG cells, through distinguishing cellular and canalicular compartments. In particular, time-course analysis of the TC-free re-incubation period of HepaRG cells, i.e., the efflux period, indicated that a 20 min-efflux period allowed to reach biliary and sinusoidal excretion indexes for TC around 80 % and 60 %, respectively. Addition of the prototypical cholestatic drugs bosentan, cyclosporin A, glibenclamide or troglitazone during the TC-free efflux phase period was demonstrated to markedly inhibit canalicular and sinusoidal secretion of TC, whereas, by contrast, incubation with the non-cholestatic compounds salicylic acid or flumazenil was without effect. Such data therefore support the use of human HepaRG cells for in vitro predicting DILIs due to inhibition of hepatic bile acid secretion, using a biphasic TC loading/efflux assay. This article is protected by copyright. All rights reserved
    corecore