75 research outputs found
The association of early IQ and education with mortality: 65 year longitudinal study in Malmö, Sweden
Objectives To establish whether differences in early IQ explain why people with longer education live longer, or whether differences in father’s or own educational attainment explain why people with higher early IQ live longer
Childhood IQ and marriage by mid-life: the Scottish Mental Survey 1932 and the Midspan Studies
The study examined the influence of IQ at age 11 years on marital status by mid-adulthood. The combined databases of the Scottish Mental Survey 1932 and the Midspan studies provided data from 883 subjects. With regard to IQ at age 11, there was an interaction between sex and marital status by mid-adulthood (p = 0.0001). Women who had ever-married achieved mean lower childhood IQ scores than women who had never-married (p < 0.001). Conversely, there was a trend for men who had ever-married to achieve higher childhood IQ scores than men who had never-married (p = 0.07). In men, the odds ratio of ever marrying was 1.35 (95% CI 0.98–1.86; p = 0.07) for each standard deviation increase in childhood IQ. Among women, the odds ratio of ever marrying by mid-life was 0.42 (95% CI 0.27–0.64; p = 0.0001) for each standard deviation increase in childhood IQ. Mid-life social class had a similar association with marriage, with women in more professional jobs and men in more manual jobs being less likely to have ever-married by mid-life. Adjustment for the effects of mid-life social class and height on the association between childhood IQ and later marriage, and vice versa, attenuated the effects somewhat, but suggested that IQ, height and social class acted partly independently
Using relative and absolute measures for monitoring health inequalities: experiences from cross-national analyses on maternal and child health
Background. As reducing socio-economic inequalities in health is an important public health objective, monitoring of these inequalities is an important public health task. The specific inequality measure used can influence the conclusions drawn, and there is no consensus on which measure is most meaningful. The key issue raising most debate is whether to use relative or absolute inequality measures. Our paper aims to inform this debate and develop recommendations for monitoring health inequalities on the basis of empirical analyses for a broad range of developing countries. Methods. Wealth-group specific data on under-5 mortality, immunisation coverage, antenatal and delivery care for 43 countries were obtained from the Demographic and Health Surveys. These data were used to describe the association between the overall level of these outcomes on the one hand, and relative and absolute poor-rich inequalities in these outcomes on the other. Results. We demonstrate that the values that the absolute and relative inequality measures can take are bound by mathematical ceilings. Yet, even where these ceilings do not play a role, the magnitude of inequality is correlated with the overall level of the outcome. The observed tendencies are, however, not necessities. There are countries with low mortality levels and low relative inequalities. Also absolute inequalities showed variation at most overall levels. Conclusion. Our study shows that both absolute and relative inequality measures can be meaningful for monitoring inequalities, provided that the overall level of the outcome is taken into account. Suggestions are given on how to do this. In addition, our paper presents data that can be used for benchmarking of inequalities in the field of maternal and child health in low and middle-income countries
Detecting spatio-temporal mortality clusters of European countries by sex and ag
[EN] Background: Mortality decreased in European Union (EU) countries during the last century. Despite these similar
trends, there are still considerable differences in the levels of mortality between Eastern and Western European
countries. Sub-group analysis of mortality in Europe for different age and sex groups is common, however to our
knowledge a spatio-temporal methodology as in this study has not been applied to detect significant spatial
dependence and interaction with time. Thus, the objective of this paper is to quantify the dynamics of mortality in
Europe and detect significant clusters of mortality between European countries, applying spatio-temporal
methodology. In addition, the joint evolution between the mortality of European countries and their neighbours over
time was studied.
Methods: The spatio-temporal methodology used in this study takes into account two factors: time and the
geographical location of countries and, consequently, the neighbourhood relationships between them. This
methodology was applied to 26 European countries for the period 1990-2012.
Results: Principally, for people older than 64 years two significant clusters were obtained: one of high mortality
formed by Eastern European countries and the other of low mortality composed of Western countries. In contrast, for
ages below or equal to 64 years only the significant cluster of high mortality formed by Eastern European countries
was observed. In addition, the joint evolution between the 26 European countries and their neighbours during the
period 1990-2012 was confirmed. For this reason, it can be said that mortality in EU not only depends on differences in
the health systems, which are a subject to national discretion, but also on supra-national developments.
Conclusions: This paper proposes statistical tools which provide a clear framework for the successful implementation
of development public policies to help the UE meet the challenge of rethinking its social model (Social Security and
health care) and make it sustainable in the medium term.The authors are grateful for the financial support provided by the Ministry of Economy and Competitiveness, project MTM2013-45381-P. Adina Iftimi gratefully acknowledges financial support from the MECyD (Ministerio de Educacion, Cultura y Deporte, Spain) Grant FPU12/04531. Francisco Montes is grateful for the financial support provided by the Spanish Ministry of Economy and Competitiveness, project MTM2016-78917-R. The research by Patricia Carracedo and Ana Debon has been supported by a grant from the Mapfre Foundation.Carracedo-Garnateo, P.; Debón Aucejo, AM.; Iftimi, A.; Montes-Suay, F. (2018). Detecting spatio-temporal mortality clusters of European countries by sex and ag. International Journal for Equity in Health. 17:1-19. https://doi.org/10.1186/s12939-018-0750-zS11917Anderson TW, Goodman LA. Statistical Inference about Markov Chains. Ann Math Stat. 1957; 28(1):89–110.Anselin L. Local Indicators of Spatial Association–LISA. Geographical Anal. 1995; 27(2):93–115.Bilbao-Ubillos J. Is there still such a thing as the ‘European social model’?. Int J Soc Welf. 2016; 25:110–25.Bivand R. spdep: Spatial Dependence:Weighting Schemes, Statistics and Models. 2012. R package version 0.5-53. http://CRAN.R-project.org/package=spdep .Bivand R, Hauke J, Kossowski T. Computing the Jacobian in Gaussian Spatial Autoregressive Models: An Illustrated Comparison of Available Methods. Geographical Anal. 2013; 45(2):150–79.Bivand R, Keitt T, Rowlingson B. rgdal: Bindings for the Geospatial Data Abstraction Library. 2016. R package version 1.1-10. https://CRAN.R-project.org/package=rgdal .Bivand R, Lewin-Koh N. maptools: Tools for Reading and Handling Spatial Objects. 2016. R package version 0.8-39 https://CRAN.R-project.org/package=maptools .Bonneux L, Huisman C. de Beer J. Mortality in 272 European regions, 2002-2004: an update. Eur J Epidemiol. 2010; 25(1):77–85. Reporting year: 2010.Charpentier A. Computational Actuarial Science with R. Chapman y Hall/CRC. 2014.Cliff AD, Ord JK. Spatial autocorrelation. London: Pion; 1973.Cutler D, Deaton A, Lleras-Muney A. The Determinants of Mortality. J Econ Perspect. 2006; 20(3):97–120.Debón A, Chaves L, Haberman S, Villa F. Characterization of between-group inequality of longevity in European Union countries. Insur Math Econ. 2017; 75:151–65.Fleiss J, Levin B, Paik M. Statistical Methods for Rates and Proportions: Wiley; 2013.Gordon M. Gmisc: Descriptive Statistics, Transition Plots, and More. 2016. R package version 1.3.1. https://CRAN.R-project.org/package=Gmisc .Hinde A. Demographic methods. Routledge: Routledge; 1998.Hyndman RJ, Booth H, Tickle L, Maindonald J. demography: Forecasting mortality, fertility, migration and population data. 2014. package version 1.18. https://CRAN.R-project.org/package=demography .Human Mortality Database. University of California, Berkeley (USA), and Max Planck Institute for Demographic Research (Germany). 2016. Available at www.mortality.org or www.humanmortality.de (data downloaded on 12th July 2016).Hatzopoulos P, Haberman S. Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insurance Math Econ. 2013; 52(2):320–37.Iftimi A, Montes F, Santiyán AM, Martínez-Ruiz F. Space–time airborne disease mapping applied to detect specific behaviour of varicella in Valencia, Spain Spatial Spatio-Temporal Epidemiol. 2015; 14:33–44.Julious S, Nicholl J, George S. Why do we continue to use standardized mortality ratios for small area comparisons?. J Public Health. 2001; 23(1):40–6.Laurent T, Ruiz-Gazen A, Thomas-Agnan C. GeoXp: An R package for exploratory spatial data analysis. J Stat Softw. 2012; 47(2):1–23.Leon DA. Trends in European life expectancy: a salutary view. Int J Epidemiol. 2011; 40:271–7.Li H, Li L, Wu B, Xiong Y. The End of Cheap Chinese Labor. J Econ Perspect. 2013; 26(4):57–74.Mackenbach JP, Karanikolos M, McKee M. The unequal health of Europeans: successes and failures of policies. The Lancet. 2013; 381(9872):1125–34.Meslé F. Mortality in Central and Eastern Europe: Long-term trends and recent upturns. Demographic Res. 2004; 2:45–70.Meslé F, Vallin J. Mortality in Europe: The divergence between East and West. Population (English Edition). 2002; 57(1):157–97.Moran PAP. Notes on continuous stochastic phenomena. Biometrika. 1950; 37(1-2):17–23.Moran PAP. A Test for the Serial Independence of Residuals. Biometrika. 1950; 37(1/2):178–81.Neuwirth E. RColorBrewer: ColorBrewer Palettes. R package version. 2014; 1:1–2. https://CRAN.R-project.org/package=RColorBrewer .Oleckno WA. Epidemiology: concepts and methods: Waveland Press, Inc.; 2008.Quah D. Galton’s Fallacy and Tests of the Convergence Hypothesis. Scand J Econ. 1993; 95(4):427–43.R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. 2015. https://www.R-project.org/ .Rey S. In: Fischer MM, Nijkamp P, (eds).Spatial Dynamics and Space-Time Data Analysis. Berlin, Heidelberg: Springer: Handbook of Regional Science; 2014, pp. 1365–83.Rey SJ. Spatial Empirics for Economic Growth and Convergence. Geogr Anal. 2001; 33(3):195–214.Riffe T. Reading Human Fertility Database and Human Mortality Database data into R. Technical Report TR-2015-004, MPIDR. 2015.Schofield R, Reher D, Bideau A. The Decline of Mortality in Europe. International studies in demography. Oxford: Clarendon Press; 1991.Shaw M, Orford S, Brimblecombe N, Dorling D. Widening inequality in mortality between 160 regions of 15 European countries in the early 1990s. Soc Sci Med. 2000; 50(7-8):1047–58.Spinakis A, Anastasiou G, Panousis V, Spiliopoulos K, Palaiologou S, Yfantopoulos J. Expert Review and Proposals for Measurement of Health Inequalities in the European Union. European Commission. Technical report,Luxembourg: European Commission Directorate General for Health and Consumers; 2011. http://ec.europa.eu/health/social_determinants/docs/full_quantos_en.pdf .Staehr K. Economic transition in Estonia. Background, reforms and results In: Rindzeviciute E, editor. Contemporary Change in Estonia. Baltic and East European Studies. Sodertorns hogskola: Baltic and East European Studies: 2004. p. 437–67.Trnka L, Dankova D, Zitova J, Cimprichova L, Migliori GB, Clancy L, Zellweger J. Survey of BCG vaccination policy in Europe: 1994-96. Bull World Health Organ. 1998; 76(1):85–91.United Nations Inter–agency Group for Child Mortality Estimation. Levels & Trends in Child Mortality: Report 2013. New York: Technical report, United Nations Children’s Fund; 2013. Avaliable at www.who.int/maternal_child_adolescent/documents/levels_trends_child_mortality_2013.pdf Accessed 27 Oct 2016.Vågerö D. The east–west health divide in Europe: Growing and shifting eastwards. Eur Rev. 2010; 18(01):23–34.Vaupel JW, Zhang Z, van Raalte AA, Vaupel JW, Zhang Z, van Raalte AA. Life expectancy and disparity: an international comparison of life table data. BMJ Open. 2011; 1:e000128.Wickham H, Chang W. devtools: Tools to Make Developing R Packages Easier. R package version 1.11.1. 2016. https://CRAN.R-project.org/package=devtools .Wilcox R. Introduction to robust estimation and hypothesis testing, 3rd Edition.San Diego: Academic Press; 2012
Contribution of main causes of death to social inequalities in mortality in the whole population of Scania, Sweden
BACKGROUND: To more efficiently reduce social inequalities in mortality, it is important to establish which causes of death contribute the most to socioeconomic mortality differentials. Few studies have investigated which diseases contribute to existing socioeconomic mortality differences in specific age groups and none were in samples of the whole population, where selection bias is minimized. The aim of the present study was to determine which causes of death contribute the most to social inequalities in mortality in each age group in the whole population of Scania, Sweden. METHODS: Data from LOMAS (Longitudinal Multilevel Analysis in Skåne) were used to estimate 12-year follow-up mortality rates across levels of socioeconomic position (SEP) and workforce participation in 975,938 men and women aged 0 to 80 years, during 1991–2002. RESULTS: The results generally showed increasing absolute mortality differences between those holding manual and non-manual occupations with increasing age, while there were inverted u-shaped associations when using relative inequality measures. Cardiovascular diseases (CVD) contributed to 52% of the male socioeconomic difference in overall mortality, cancer to 18%, external causes to 4% and psychiatric disorders to 3%. The corresponding contributions in women were 55%, 21%, 2% and 3%. Additionally, those outside the workforce (i.e., students, housewives, disability pensioners, and the unemployed) showed a strongly increased risk of future mortality in all age groups compared to those inside the workforce. Even though coronary heart disease (CHD) played a major contributing role to the mortality differences seen, stroke and other types of cardiovascular diseases also made substantial contributions. Furthermore, while the most common types of cancers made substantial contributions to the socioeconomic mortality differences, in some age groups more than half of the differences in cancer mortality could be attributed to rarer cancers. CONCLUSION: CHD made a major contribution to the socioeconomic differences in overall mortality. However, there were also important contributions from diseases with less well understood mechanistic links with SEP such as stroke and less-common cancers. Thus, an increased understanding of the mechanisms connecting SEP with more rare causes of disease might be important to be able to more successfully intervene on socioeconomic differences in health
Spatio-temporal trends of mortality in small areas of Southern Spain
Background: Most mortality atlases show static maps from count data aggregated over time. This procedure has several methodological problems and serious limitations for decision making in Public Health. The evaluation of health outcomes, including mortality, should be approached from a dynamic time perspective that is specific for each gender and age group. At the moment, researches in Spain do not provide a dynamic image of the population’s mortality status from a spatio-temporal point of view. The aim of this paper is to describe the spatial distribution of mortality from all causes in small areas of Andalusia (Southern Spain) and evolution over time from
1981 to 2006.
Methods: A small-area ecological study was devised using the municipality as the unit for analysis. Two spatiotemporal hierarchical Bayesian models were estimated for each age group and gender. One of these was used to
estimate the specific mortality rate, together with its time trends, and the other to estimate the specific rate ratio
for each municipality compared with Spain as a whole.
Results: More than 97% of the municipalities showed a diminishing or flat mortality trend in all gender and age groups. In 2006, over 95% of municipalities showed male and female mortality specific rates similar or significantly lower than Spanish rates for all age groups below 65. Systematically, municipalities in Western Andalusia showed
significant male and female mortality excess from 1981 to 2006 only in age groups over 65.
Conclusions: The study shows a dynamic geographical distribution of mortality, with a different pattern for each year, gender and age group. This information will contribute towards a reflection on the past, present and future of mortality in Andalusia.Ye
Socio-economic status and overall and cause-specific mortality in Sweden
<p>Abstract</p> <p>Background</p> <p>Previous studies have reported discrepancies in cause-specific mortality among groups of individuals with different socio-economic status. However, most of the studies were limited by the specificity of the investigated populations and the broad definitions of the causes of death. The aim of the present population-based study was to explore the dependence of disease specific mortalities on the socio-economic status in Sweden, a country with universal health care. Another aim was to investigate possible gender differences.</p> <p>Methods</p> <p>Using the 2006 update of the Swedish Family-Cancer Database, we identified over 2 million individuals with socio-economic data recorded in the 1960 national census. The association between mortality and socio-economic status was investigated by Cox's proportional hazards models taking into account the age, time period and residential area in both men and women, and additionally parity and age at first birth in women.</p> <p>Results</p> <p>We observed significant associations between socio-economic status and mortality due to cardiovascular diseases, respiratory diseases, to cancer and to endocrine, nutritional and metabolic diseases. The influence of socio-economic status on female breast cancer was markedly specific: women with a higher socio-economic status showed increased mortality due to breast cancer.</p> <p>Conclusion</p> <p>Even in Sweden, a country where health care is universally provided, higher socio-economic status is associated with decreased overall and cause-specific mortalities. Comparison of mortality among female and male socio-economic groups may provide valuable insights into the underlying causes of socio-economic inequalities in length of life.</p
A meta-analysis of genome-wide association studies of epigenetic age acceleration
Funding: Generation Scotland received core support from the Chief Scientist Office of the Scottish Government Health Directorates (CZD/16/6) and the Scottish Funding Council (HR03006). Genotyping and DNA methylation profiling of the GS samples was carried out by the Genetics Core Laboratory at the Wellcome Trust Clinical Research Facility, Edinburgh, Scotland and was funded by the Medical Research Council UK and the Wellcome Trust (Wellcome Trust Strategic Award “STratifying Resilience and Depression Longitudinally” ((STRADL) Reference 104036/Z/14/Z)). Funding details for the cohorts included in the study by Lu et al. (2018) can be found in their publication. HCW is supported by a JMAS SIM fellowship from the Royal College of Physicians of Edinburgh and by an ESAT College Fellowship from the University of Edinburgh. AMM & HCW acknowledge the support of the Dr. Mortimer and Theresa Sackler Foundation. SH acknowledges support from grant 1U01AG060908-01. REM is supported by Alzheimer’s Research UK major project grant ARUK-PG2017B-10. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Data Availability: Summary statistics from the research reported in the manuscript will be made available immediately following publication on the Edinburgh Data Share portal with a permanent digital object identifier (DOI). According to the terms of consent for Generation Scotland participants, requests for access to the individual-level data must be reviewed by the GS Access Committee ([email protected]). Individual-level data are not immediately available, due to confidentiality considerations and our legal obligation to protect personal information. These data will, however, be made available upon request and after review by the GS access committee, once ethical and data governance concerns regarding personal data have been addressed by the receiving institution through a Data Transfer Agreement.Peer reviewedPublisher PD
- …