31 research outputs found

    Restoring Rangelands for Nutrition and Health for Humans and Livestock

    Get PDF
    Drylands cover 40% of the global land area and host 2 billion people, of which 90% live in low- or middleincome countries. Drylands often face severe land degradation, low agricultural productivity, rapid population growth, widespread poverty, and poor health. Governance structures and institutions are often eroded. Livestock-based livelihoods, largely depending on seasonal migration are common. Pastoralist communities and their land are highly vulnerable to climate shocks, while there are also changes in land tenure, insecurity/conflicts and rapid infrastructure development. Drylands Transform is an interdisciplinary research project revolving around the UN Sustainable Development Goals (SDGs). The project aim is to contribute new knowledge to a transformative change and sustainable development of drylands in East Africa to help escape the ongoing negative spiral of land, livestock and livelihood degradation. We investigate the links between land health, livelihoods, human well-being, and land management and governance with several study sites along the Kenya-Uganda border. Through strong stakeholder engagement we will explore challenges and pathways towards a social-ecological transformation in these drylands. The entry point is the urgent need to identify and enhance synergies between food and nutrition security (SDG2), land and ecosystem health (SDG15) and governance and justice (SDG16) for sustainable dryland development, aiming to improve health and equity (SDGs 3 and 5), while minimizing trade-offs between agricultural productivity, natural resources management and climate change. We are using innovative field research approaches focusing on livelihood improvement through rangeland (grazing areas) restoration and governance interventions. We will present results from the initial work to assess land health using the Land Degradation Surveillance Framework and explore the links with human health and well-being through household survey data. We will also show how we will co-develop sustainable dryland management options (e.g., field experiments with fodder grasses and shrubs) with local communities and set-up knowledge sharing hubs

    Spatio-temporal land use/cover dynamics and its implication for sustainable land use in Wanka watershed, northwestern highlands of Ethiopia

    Get PDF
    Long-term land use and land cover (LULC) dynamics information is essential to understand the trends and make necessary land management interventions, such as in the highlands of Ethiopia. This study analyzed six decades of LULC dynamics of Wanka watershed, Northwestern Ethiopian highlands. Two sets of aerial photographs (1957 and 2017), SPOT 5 and sentinel satellite imageries were analyzed. In addition, key informant interviews, focus group discussions and field observations were used to identify the drivers and impact of LULC change. It was found that cultivated and rural settlement land (CRSL), bare land, and urban built up area have been continuously expanded at the expenses of mainly forest and shrub lands. Over the entire study period (1957–2017) while the bare land and CRSL have increased by about 59% and 20% respectively, forest and shrub lands have declined by 59% and 57% respectively. Urban built up area has also expanded. The impact of popula- tion pressure and expansion of CRSL land were considerable. The trend of LULC dynamics in the study watershed implies adverse impact on the quality and quantity of the land resource. Hence, appropriate land use planning and strategies that reduce expansion of cultivated land need to be practiced

    Regreening Africa: A bottom-up transformation of degraded lands

    No full text
    It is estimated that 20% of global land is either degraded or undergoing degradation, leading to an annual loss of 12 million hectares of productive land (UNCCD 2017). In Africa, some 715 million ha are degraded, including 65% of all arable land, 30% of all grazing land and 20% of all forests. This is due to increasing populations, poor land management, institutional challenges and climate change (Gnacadja and Wiese 2016). The benefits of taking action against land degradation outweigh the costs by up to seven times, implying that inaction will cost countries US490billionperyear,whileactiontoreverselanddegradationcouldgeneratebenefitsworthuptoUS490 billion per year, while action to reverse land degradation could generate benefits worth up to US1.4 trillion (ELD Initiative 2015

    Continuous monitoring of forest change dynamics with satellite time series

    No full text
    Several forest change detection algorithms are available for tracking and quantifying deforestation based on dense Landsat and Sentinel time series satellite data. Only few also capture regrowth after clearing in an accurate and continuous way across a diversity of forest types (including dry and seasonal forests) and are thus suitable to address the need for better information on secondary forest succession and for assessing forest restoration activities. We present a new change detection algorithm that makes use of the flexibility of kernel density estimations to create a forest reference phenology, taking into account all historical phenological variations of the forest rather than smoothing these out by curve fitting. The AVOCADO (Anomaly Vegetation Change Detection) algorithm allows detection of anomalies with a spatially explicit likelihood measure. We demonstrate the flexibility of the algorithm for three contrasting sites using all available Landsat time series data; ranging from tropical rainforest to dry miombo forest ecosystems, with different time series data densities, and characterized by different forest change types (e.g. selective logging, shifting cultivation). We found that the approach produced in general high overall accuracies (> 90%) across these varying conditions, but had lower accuracies in the dry forest site with a slight overestimation of disturbances and regrowth. The latter was due to the similarity of crops in the time series NDMI signal, causing false regrowth detections. In the moist forest site the low producer accuracies in the intact forest and regrowth class was due to its very small area class (most forest disappeared by the nineties). We showed that the algorithm is capable of capturing small-scale (gradual) changes (e.g. selective logging, forest edge logging) and the multiple changes associated to shifting cultivation. The performance of the algorithm has been shown at regional scale, but if larger scale studies are required a representative selection of reference forest types need to be selected carefully. The outputs of the change maps allow the estimation of the spatio-temporal trends in the proportions of intact forest, secondary forest and non-forest - information that is useful for assessing the areas and potential of secondary forests to accumulate carbon and forest restoration targets. The algorithm can be used for disturbance and regrowth monitoring in different ecozones, is user friendly, and open source

    Assessing biogeochemical and human-induced drivers of soil organic carbon to inform restoration activities in Rwanda

    No full text
    Land restoration is of critical importance in Rwanda, where land degradation negatively impacts crop productivity, water, food and nutrition security. We implemented the Land Degradation Surveillance Framework in Kayonza and Nyagatare districts in eastern Rwanda to assess baseline status of key soil and land health indicators, including soil organic carbon (SOC) and soil erosion prevalence. We collected 300 topsoil (0–20 cm) and 281 subsoil (20–50 cm) samples from two 100 km2 sites. We coupled the soil health indicators with vegetation structure, tree density and tree diversity assessments. Mean topsoil organic carbon was low overall, 20.9 g kg−1 in Kayonza and 17.3 g kg−1 in Nyagatare. Stable carbon isotope values (d13CV-PDB ) ranged from −15.35 to −21.34 ‰ indicating a wide range of plant communities with both C3 and C4 photosynthetic pathways. Soil carbon content decreased with increasing sand content across both sites and at both sampling depths and was lowest in croplands compared to shrubland, woodland and grasslands. Field-saturated hydraulic conductivity (Kfs) was estimated based on infiltration measurements, with a median of 76 mm h−1 in Kayonza and 62 mm h−1 in Nyagatare, respectively. Topsoil OC had a positive effect on Kfs, whereas pH, sand and compaction had negative effects. Soil erosion was highest in plots classified as woodland and shrubland. Maps of soil erosion and SOC at 30-m resolution were produced with high accuracy and showed high variability across the region. These data and analysis demonstrate the importance of systematically monitoring multiple indicators at multiple spatial scales to assess drivers of degradation and their impact on soil organic carbon dynamics

    Regreening Africa: Consolidated Baseline Survey Report

    No full text
    The United Nations General Assembly declared 2021 to 2030 as the decade of ‘ecosystem restoration’, signalling a global consensus on the urgency to restore degraded lands. Restoring degraded lands is critical to regain lost ecological functionality that underpins life-sustaining ecosystem services, such as the provision of food, fresh water, and fibre, and the regulation of climate, natural disasters, and pests. Indeed, restoration is fundamental for meeting the triple goals of tackling the climate crisis, reversing biodiversity loss, and improving human wellbeing. Regreening Africa (2017 to 2022) is part of a larger global and regional effort to reverse and halt land degradation, which is being implemented in eight African countries: Ethiopia, Ghana, Kenya, Mali, Niger, Rwanda, Senegal, and Somalia
    corecore