45 research outputs found

    On the complexity of computing the handicap of a sufficient matrix

    Get PDF
    The class of sufficient matrices is important in the study of the linear complementarity problem (LCP)—some interior point methods (IPM’s) for LCP’s with sufficient data matrices have complexity polynomial in the bit size of the matrix and its handicap.In this paper we show that the handicap of a sufficient matrix may be exponential in its bit size, implying that the known complexity bounds of interior point methods are not polynomial in the input size of the LCP problem. We also introduce a semidefinite programming based heuristic, that provides a finite upper bond on the handicap, for the sub-class of Ρ-matrices (where all principal minors are positive)

    Impact of deep learning-determined smoking status on mortality of cancer patients: never too late to quit

    Get PDF
    BackgroundPersistent smoking after cancer diagnosis is associated with increased overall mortality (OM) and cancer mortality (CM). According to the 2020 Surgeon General's report, smoking cessation may reduce CM but supporting evidence is not wide. Use of deep learning-based modeling that enables universal natural language processing of medical narratives to acquire population-based real-life smoking data may help overcome the challenge. We assessed the effect of smoking status and within-1-year smoking cessation on CM by an in-house adapted freely available language processing algorithm.Materials and methodsThis cross-sectional real-world study included 29 823 patients diagnosed with cancer in 2009-2018 in Southwest Finland. The medical narrative, International Classification of Diseases-10th edition codes, histology, cancer treatment records, and death certificates were combined. Over 162 000 sentences describing tobacco smoking behavior were analyzed with ULMFiT and BERT algorithms.ResultsThe language model classified the smoking status of 23 031 patients. Recent quitters had reduced CM [hazard ratio (HR) 0.80 (0.74-0.87)] and OM [HR 0.78 (0.72-0.84)] compared to persistent smokers. Compared to never smokers, persistent smokers had increased CM in head and neck, gastro-esophageal, pancreatic, lung, prostate, and breast cancer and Hodgkin's lymphoma, irrespective of age, comorbidities, performance status, or presence of metastatic disease. Increased CM was also observed in smokers with colorectal cancer, men with melanoma or bladder cancer, and lymphoid and myeloid leukemia, but no longer independently of the abovementioned covariates. Specificity and sensitivity were 96%/96%, 98%/68%, and 88%/99% for never, former, and current smokers, respectively, being essentially the same with both models.ConclusionsDeep learning can be used to classify large amounts of smoking data from the medical narrative with good accuracy. The results highlight the detrimental effects of persistent smoking in oncologic patients and emphasize that smoking cessation should always be an essential element of patient counseling.</p

    Rhythm Returns: Movement and Cultural Theory

    Get PDF
    This introduction charts several of rhythm's various returns as a way of laying out the theoretical and methodological field in which the articles of this special issue find their place. While Henri Lefebvre’s rhythmanalysis is perhaps familiar to many, rhythm has appeared in a wide repertoire of guises, in many disciplines over the decades and indeed the centuries. This introduction attends to the particular roles of rhythm in the formation of modernity ranging from the processes of industrialization and the proliferation of new media technologies to film and literary aesthetics as well as conceptualizations of human psychology, social behaviour and physiology. These are some of the historical antecedents to the contemporary understandings of rhythm within body studies to which most of the contributions to this issue are devoted. In this respect, the introduction outlines recent approaches to rhythm as vibration, a force of the virtual, and an intensive excess outside consciousness

    The Energy Landscape Analysis of Cancer Mutations in Protein Kinases

    Get PDF
    The growing interest in quantifying the molecular basis of protein kinase activation and allosteric regulation by cancer mutations has fueled computational studies of allosteric signaling in protein kinases. In the present study, we combined computer simulations and the energy landscape analysis of protein kinases to characterize the interplay between oncogenic mutations and locally frustrated sites as important catalysts of allostetric kinase activation. While structurally rigid kinase core constitutes a minimally frustrated hub of the catalytic domain, locally frustrated residue clusters, whose interaction networks are not energetically optimized, are prone to dynamic modulation and could enable allosteric conformational transitions. The results of this study have shown that the energy landscape effect of oncogenic mutations may be allosteric eliciting global changes in the spatial distribution of highly frustrated residues. We have found that mutation-induced allosteric signaling may involve a dynamic coupling between structurally rigid (minimally frustrated) and plastic (locally frustrated) clusters of residues. The presented study has demonstrated that activation cancer mutations may affect the thermodynamic equilibrium between kinase states by allosterically altering the distribution of locally frustrated sites and increasing the local frustration in the inactive form, while eliminating locally frustrated sites and restoring structural rigidity of the active form. The energy landsape analysis of protein kinases and the proposed role of locally frustrated sites in activation mechanisms may have useful implications for bioinformatics-based screening and detection of functional sites critical for allosteric regulation in complex biomolecular systems

    Sequence and Structure Signatures of Cancer Mutation Hotspots in Protein Kinases

    Get PDF
    Protein kinases are the most common protein domains implicated in cancer, where somatically acquired mutations are known to be functionally linked to a variety of cancers. Resequencing studies of protein kinase coding regions have emphasized the importance of sequence and structure determinants of cancer-causing kinase mutations in understanding of the mutation-dependent activation process. We have developed an integrated bioinformatics resource, which consolidated and mapped all currently available information on genetic modifications in protein kinase genes with sequence, structure and functional data. The integration of diverse data types provided a convenient framework for kinome-wide study of sequence-based and structure-based signatures of cancer mutations. The database-driven analysis has revealed a differential enrichment of SNPs categories in functional regions of the kinase domain, demonstrating that a significant number of cancer mutations could fall at structurally equivalent positions (mutational hotspots) within the catalytic core. We have also found that structurally conserved mutational hotspots can be shared by multiple kinase genes and are often enriched by cancer driver mutations with high oncogenic activity. Structural modeling and energetic analysis of the mutational hotspots have suggested a common molecular mechanism of kinase activation by cancer mutations, and have allowed to reconcile the experimental data. According to a proposed mechanism, structural effect of kinase mutations with a high oncogenic potential may manifest in a significant destabilization of the autoinhibited kinase form, which is likely to drive tumorigenesis at some level. Structure-based functional annotation and prediction of cancer mutation effects in protein kinases can facilitate an understanding of the mutation-dependent activation process and inform experimental studies exploring molecular pathology of tumorigenesis
    corecore