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Abstract The class of sufficient matrices is important in the study of the linear
complementarity problem (LCP)—some interior point methods (IPM’s) for LCP’s
with sufficient data matrices have complexity polynomial in the bit size of the matrix
and its handicap.In this paper we show that the handicap of a sufficient matrix may be
exponential in its bit size, implying that the known complexity bounds of interior point
methods are not polynomial in the input size of the LCP problem. We also introduce
a semidefinite programming based heuristic, that provides a finite upper bond on the
handicap, for the sub-class of P-matrices (where all principal minors are positive).
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1 Introduction

The linear complementarity problem (LCP) is defined as: Given M ∈ R
n×n and

q ∈ R
n , find x ∈ R

n and s ∈ R
n such that

− Mx + q = s, xi ≥ 0, si ≥ 0, xi si = 0 (i = 1, . . . , n). (1)
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384 E. de Klerk, M. E.-Nagy

Kojima et al. [7] showed that interior point methods may be used to solve the linear
complementarity problem if M belongs to a certain class of matrices, called P∗(κ)-
matrices.

Definition 1 Let κ ≥ 0 be a nonnegative number. A matrix M ∈ R
n×n is a P∗(κ)-

matrix if for all x ∈ R
n

(1 + 4κ)
∑

i∈I+(x)

xi (Mx)i +
∑

i∈I−(x)

xi (Mx)i ≥ 0, (2)

where I+(x) = {1 ≤ i ≤ n : xi (Mx)i > 0} and I−(x) = {1 ≤ i ≤ n : xi (Mx)i <

0}.
The infimum value of κ ≥ 0 such that M is P∗(κ) is called the handicap of M , and is
denoted by κ̂(M), i.e.

κ̂(M) := inf{κ | M ∈ P∗(κ)}.

Matrices with finite handicap are known as P∗-matrices or as sufficient matrices; see
Sect. 2.1 for more details.

The worst-case iteration complexity of interior point methods depends on
the parameter κ ≥ κ̂(M). For example, the iteration complexity of the predictor-
corrector algorithm by Potra and Liu [11] is O((1 + κ)

√
nL(M, q)) in the Turing

model of computation, where L(M, q) is the bit size of the (integer) problem data
M ∈ Z

n×n and q ∈ Z
n ; see also Corollaries 6.7 and 6.9 in [7]. In this paper we

show that the handicap may be exponential in the bit size of M . This implies that the
iteration bound is not polynomial in L(M, q). In particular, it implies that there are
still no known polynomial-time algorithms (in the Turing model) to solve the class of
LCP problems where M is a P∗(κ)-matrix.

It is of practical interest to decide if a given matrix M is P∗(κ), for some given
value κ . Indeed:

– some interior point algorithms require the value of κ , e.g. the method of Potra and
Liu [11];

– some rounding schemes for LCP that convert ε-optimal solutions to exact solutions
require the value of κ , e.g. the rounding scheme in [5]. Here, the required value of
ε depends on κ .

Of course, from a purely linear algebra viewpoint, it is of independent interest to
compute or bound the handicap of a given matrix; see e.g. [16].

Complexity results by Tseng [14] imply, however, that deciding whether there exists
a finite κ for which a given matrix is P∗(κ) is an NP-hard problem. To be precise,
Tseng [14] showed that the problem of deciding whether a given integer matrix is not
sufficient is NP-complete in the Turing model.

In this paper we therefore also investigate semidefinite programming (SDP) based
heuristics for computing a (finite) value κ such that a given matrix M is P∗(κ), if
such a value exists. We show that our heuristic provides a suitable value of κ for the
so-called P-matrices (where all principle minors are positive).
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On the complexity of computing the handicap of a sufficient matrix 385

1.1 Outline of the paper

Our paper is structured as follows. We first survey some matrix classes related to the
P∗(κ) matrices in Sect. 2.1. Then we discuss the complexity of computing the hand-
icap of a matrix if it is finite. We first show that the handicap can be exponential in
the bit size of the matrix (Sect. 3), and discuss the complexity implications. Then we
review an algorithm of Väliaho [16] for computing the handicap of a matrix exactly
(if it is finite), and show that this algorithm requires Ω(6n) operations (Sect. 4). These
complexity results motivate the study of an SDP-based heuristic to compute an upper
bound on the handicap in Sects. 5 and 6. Finally, we present some numerical examples
for the heuristic in Sect. 7.

1.2 Notation

We use the following notation throughout the paper. Scalars, vectors, and indices are
denoted by lowercase Latin letters, matrices by capital Latin letters, and sets by capital
calligraphic letters. R

n+ denotes the nonnegative orthant of R
n ; I denotes the identity

matrix of appropriate dimension, and X is the diagonal matrix whose diagonal ele-
ments are the coordinates of the vector x , i.e. X = diag(x). The vector x ◦ s = Xs
is the componentwise product (Hadamard product) of the vectors x and s. The i th
entry of a vector x is denoted by xi . If A ∈ R

n×n, AJ K denotes the submatrix of
A with rows indexed by the index set J ⊂ {1, . . . , n} and columns by the index set
K ⊂ {1, . . . , n}. We will always use I to denote the index set I := {1, . . . , n}. We
denote the vector of ones by e. If f, g : N → R+, we write that f (n) = O(g(n)) if
f/g is bounded from above by a constant, and f (n) = Ω(g(n)) if f/g is bounded
from below by a constant.

2 A review of matrix classes and complexity results

2.1 Matrix classes

We start by recalling the well-known class of positive definite matrices.

Definition 2 A matrix M ∈ R
n×n belongs to the class of positive definite matrices

(P D), if xT Mx > 0 holds for all x ∈ R
n \ {0}. Likewise, M ∈ R

n×n belongs to the
class of positive semidefinite matrices (P SD) if xT Mx ≥ 0 holds for all x ∈ R

n .
Furthermore, M ∈ R

n×n is a skew-symmetric matrix1 (SS), if xT Mx = 0 for all
x ∈ R

n .

By Definition 1, P∗(0) is the class of positive semidefinite matrices (note that we
do not require symmetry in the definition of positive semidefiniteness).

1 Sometimes the skew-symmetric matrix is called antisymmetric according to its other definition: a matrix
M is skew-symmetric, if MT = −M .

123



386 E. de Klerk, M. E.-Nagy

Definition 3 A matrix M ∈ R
n×n is called a P∗-matrix if it is a P∗(κ)-matrix for

some κ ≥ 0, i.e.

P∗ =
⋃

κ≥0

P∗(κ).

Definition 4 A matrix M ∈ R
n×n is a column sufficient matrix if for all x ∈ R

n

X(Mx) ≤ 0 implies X(Mx) = 0,

and row sufficient if MT is column sufficient. Matrix M is sufficient if it is both row
and column sufficient.

Kojima et al. [7] proved that any P∗-matrix is column sufficient and Guu and Cottle
[3] proved that it is row sufficient, too. Therefore, each P∗-matrix is sufficient. Väliaho
[15] proved the other direction of inclusion, thus the class of P∗-matrices coincides
with the class of sufficient matrices.

Definition 5 A matrix M ∈ R
n×n is a P-matrix, if all of its principal minors are

positive.

Lemma 1 ([1]) The following properties for a matrix M ∈ R
n×n are equivalent:

1. M is a P-matrix.
2. For every nonzero x ∈ R

n there is an index i such that xi (Mx)i > 0.

Definition 6 A matrix M ∈ R
n×n is a P0-matrix, if all of its principal minors are

nonnegative.

In the sense of the next lemma, the closure of the matrix class P is P0.

Lemma 2 ([2]) The following properties for a matrix M ∈ R
n×n are equivalent:

1. M is a P0-matrix.
2. M + ε I is a P-matrix for every ε > 0.

It is known [7] that the following relations hold among matrix classes SS � P SD �

P∗ � P0, SS ∩P = ∅, P SD ∩P �= ∅, P � P∗, P∗(κ1) � P∗(κ2) for κ1 < κ2,
P∗(0) ≡ P SD.

2.2 Complexity of LCP for the various matrix classes

We now consider the complexity of the LCP problem with integer data (1) in the
Turing model of computation. To be precise, we have the decision problem (LCP):
Given n ∈ N, M ∈ Z

n×n and q ∈ Z
n , does (1) have a solution?

With reference to the matrix classes in Fig. 1, the known complexity results are
summarized in Table 1.

It is important for our purposes to note that the complexity of LCP for P∗-matrices
is still open. In the next section we will return to this point.
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P0

PSD

SS

RS CS

P

*
P

Fig. 1 The inclusion relations between various matrix classes; CS column sufficient, RS row sufficient,
SS skew-symmetric, PSD positive semidefinite

Table 1 The complexity of the
LCP problem with integer data
in the Turing model, for various
matrix classes

Matrix class Complexity of LCP Reference

PSD P [6]

P Not NP-hard, unless NP=co-NP [10]

P∗ Unknown

P0 NP-complete [7], p. 33

3 How large can the handicap κ̂(M) be in terms of L(M)?

An important question is whether we can polynomially bound the handicap in terms
of the bit size of the matrix. The answer is no, and the following matrix2 provides a
counterexample.

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0
−1 1 0 0 . . . 0 0
−1 −1 1 0 . . . 0 0

...
. . .

−1 −1 −1 −1 . . . −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

Every principal submatrix of M is a lower triangular matrix and it has an all-ones
diagonal, so that its determinant is one. Therefore the matrix M is a P-matrix, and
its handicap is finite. On the other hand, the matrix M is not positive semidefinite,
because, for example, for the all-ones vector e the product eT Me is negative. Therefore
the handicap has to be positive.

2 This matrix was suggested to us by Zsolt Csizmadia (private communication), as an example where the
elements of principal pivotal transform of a given matrix cannot be polynomially bounded by the elements
of the original matrix.
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388 E. de Klerk, M. E.-Nagy

Definition 7 A principal pivotal transformation of a matrix A =
(

AJ J AJ K
AKJ AKK

)
where

J ∪ K = {1, . . . , n} and AJ J is nonsingular, is the matrix

(
A−1

J J −A−1
J J AJ K

AKJ A−1
J J AKK−AKK A−1

J J AJ K

)
.

We claim that the principal pivotal transformation of M ∈ Z
n×n for the submatrix

defined by the first n − 1 rows and columns is:

M̃ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0
1 1 0 0 . . . 0 0
2 1 1 0 . . . 0 0
4 2 1 1 . . . 0 0

...
. . .

−2n−2 −2n−3 −2n−4 −2n−5 . . . −1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Indeed, in this case J = {1, . . . , n − 1}, and MJ J has the same structure as M does.
Using the identity

∑k−1
i=0 2i = 2k − 1, it is easy to check that

M−1
J J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 . . . 0 0
1 1 0 0 . . . 0 0
2 1 1 0 . . . 0 0
4 2 1 1 . . . 0 0

...
. . .

2n−3 2n−4 2n−5 2n−6 . . . 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which proves our claim.

Theorem 1 ([3,7]) Let M ∈ R
n×n be a sufficient matrix. Then:

1. The handicaps of M and all its principal pivotal transforms are the same.
2. The handicap of M is at least as large as that of any of its proper principal

submatrices.

Accordingly κ̂(M) ≥ κ̂(M̃KK), where K = {1, n}. Using the closed form expression
of Väliaho [16] for the handicap of a 2 × 2 matrix,

κ̂

(
m11 m12
m21 m22

)
= 1

4

[
m2

21(√
m11 m22 + √

m11 m22 − m12 m21
)2 − 1

]
, (4)
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On the complexity of computing the handicap of a sufficient matrix 389

we obtain

κ̂(M̃KK) = κ̂

(
1 0

−2n−2 1

)
= 1

4

(
−1 + 22(n−2)

22

)
= −0.25 + 22n−8.

It means, that κ̂(M) = Ω(22n), while all elements of matrix M equal −1, 0 or 1. Since

we can encode these elements of M using at most 2n2 bits, we have κ̂(M) = Ω
(

2
√

L
)

,

where L is the bit size of M .

Remark 1 Consider the LCP problem (1) for P∗(κ) matrices. Our example shows
that the typical O((1 + κ)

√
nL(M, q)) iteration bound for interior point algorithms

for these problems is not polynomial in L(M, q) in general. Thus the Turing model
complexity of the class of LCP’s with P∗-matrices remains open.

We close this section with a conjecture that the size of the handicap κ̂(M) is at most
exponential in the bit size of the matrix M , and a related theorem.

Conjecture 1 There exists a univariate polynomial p with the following property: for
any (integer) sufficient matrix M with encoding bit size L(M), one has κ̂(M) ≤
2p(L(M)), i.e. there exists an upper bound on the handicap with encoding size polyno-
mially bounded by the encoding size of the matrix.

In the conjecture, we do not make claims about the bit size of the handicap itself, since
it can be an irrational number.

We now consider the computation complexity of the following decision problem:

Given integers t, n > 0, and an integer n × n matrix M , is κ̂(M) > t? (5)

Theorem 2 The decision problem (5) is in NP in the Turing model.

Proof Assume M ∈ Z
n×n with bit size L(M). A ‘yes’ answer to the decision problem

(5) has a certificate given by a suitable vector x ∈ R
n that satisfies

(1 + 4t)
∑

i∈I+(x)

xi (Mx)i +
∑

i∈I−(x)

xi (Mx)i ≤ −1.

We now derive a new certificate from x that has size polynomial in L(M) and t , and
can therefore be checked in polynomial time. For our given x , we define the index sets
I+(x) = {1 ≤ i ≤ n : xi (Mx)i > 0} and I−(x) = {1 ≤ i ≤ n : xi (Mx)i < 0}, as
before, as well as

I++(x) := {i ∈ I+(x) : (Mx)i > 0 and xi ≥ 0},
I−−(x) := {i ∈ I−(x) : (Mx)i ≤ 0 and xi ≥ 0}.

Let us now consider the following quadratic programming problem (in decision form):
does there exist a u ∈ R

n such that:

(1 + 4t)
∑

i∈I+(x)

ui (Mu)i +
∑

i∈I−(x)

ui (Mu)i ≤ −1,
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390 E. de Klerk, M. E.-Nagy

as well as

ui ≥ 0, (Mu)i ≥ 0 ∀ i ∈ I++(x),

ui ≤ 0, (Mu)i ≤ 0 ∀ i ∈ I+(x) \ I++(x),

ui ≥ 0, (Mu)i ≤ 0 ∀ i ∈ I−−(x),

ui ≤ 0, (Mu)i ≥ 0 ∀ i ∈ I−(x) \ I−−(x)?

By construction, a solution is given by u = x . Since the decision version of quadratic
programming is in NP [17], there also exists a solution, say ū, with bit size bounded
by a polynomial in L(M) and t . Thus ū is a suitable ‘yes’-certificate for problem (5)
that can be verified in polynomial time. ��

Theorem 3 If Conjecture 1 is true, then the decision problem (5) is NP-complete in
the Turing model.

Proof Assume that M ∈ Z
n×n of bit size L(M) is given and that M is not sufficient.

If Conjecture 1 is true, we may obtain a ‘yes’ certificate or the decision problem (5)
for t := �2p(L(M))�. By Theorem 2, the bit size of this certificate may be assumed to
be polynomial in L(M).

Thus we obtain a certificate that M is not sufficient, and the certificate may be ver-
ified in polynomial time. Since deciding if a matrix is not sufficient is NP-complete
in the Turing model (Corollary 1 in [14]), the proof is complete. ��

4 The computational complexity of Väliaho’s algorithm

In this section we recall Väliaho’s [16] recursive method to evaluate the handicap of
a sufficient matrix, and we determine a lower bound on the complexity of this proce-
dure. (Väliaho [16] gives no explicit analysis of the complexity of the algorithm in his
paper.)

Let M ∈ R
n×n be a P-matrix, but not PSD. Väliaho [16] defined

κ̂n−1 := max
{
κ̂(BI−i,I−i ) : B is a principal pivotal transform of M and i ∈ I},

where I := {1, . . . , n} as before.
Let us assume that κ̂n−1 is known. If the matrix M is sufficient but not a P-matrix,

then κ̂(M) = κ̂n−1 [16, Theorem 6.2]. Algorithm 1 computes the handicap of matrix
M , if it is a P-matrix.

In order to avoid repetition, Väliaho determines the handicap of M by calculating
the handicaps of all principal submatrices of order i of all principal pivotal transforms
of M sequentially for i = 2, . . . , n. (Recall that there is a closed form for the handicap
of two by two sufficient matrices (see (4)).

We denote the operational counts of

– determining the handicap of matrix M by kn , where M ∈ R
n×n ,
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On the complexity of computing the handicap of a sufficient matrix 391

Algorithm 1 (Väliaho [16])
INPUT: A P-matrix M ∈ R

n×n , a value κ̂n−1.
t0 := 4 κ̂n−1 + 1
for = all R ⊆ I \ {n},R �= ∅

S := I \ {n} \ R
if MRR /∈ P D or MSS /∈ P D then choose a new R.

Define B(t) =

⎛

⎜⎜⎝

MRR + MT
RR MRS + t MT

SR MRn + t MT
nR

MT
RS + t MSR t

(
MSS + MT

SS
)

t
(

MSn + MT
nS
)

MT
Rn + t MnR t

(
MnS + MT

Sn

)
2t Mnn

⎞

⎟⎟⎠.

for = all t̂ solutions of det
(
B(t)

) = 0 on the intervals (0, t−1
0 ) and (t0,∞) do

if = t̂ > t0 and BI−n,I−n(t̂) ∈ P D then[
x̂R, x̂S

]T := −B−1
I−n,I−n(t̂) BI−n,n(t̂) (x̂n := 1)

if = x̂i (Mx̂)i < 0 for all i ∈ R and x̂i (Mx̂)i > 0 for all i ∈ S ∪ {n} then
t0 := t̂

if = t̂ < 1/t0 and BI−n,I−n(t̂) ∈ P D then[
x̂R, x̂S

]T := −B−1
I−n,I−n(t̂) BI−n,n(t̂) (x̂n := 1)

if = x̂i (Mx̂)i > 0 for all i ∈ R and x̂i (Mx̂)i < 0 for all i ∈ S ∪ {n} then
t0 := 1/t̂

end
end

OUTPUT: κ̂(M) = 1
4 (t0 − 1).

– solving for t in det(B(t)) = 0 by dn , where B(t) ∈ R
n×n ,

– determining κ̂n−1(M) by cn−1.

In Algorithm 1 we choose the set R as a subset of I − n, but R �= ∅, so we have
2n−1 − 1 possibilities. Then

kn ≥
(

2n−1 − 1
)

dn + cn−1.

To determine cn−1 we have to calculate the handicap of n − 1 dimensional matrices.
Now let us assume, that we know the handicap of all principal submatrices of order

i − 1 (i ≥ 3) of all principal pivotal transforms of M . Then to determine the handicap
of the principal submatrices of order i of a principal pivotal transform of M we need
at least (2i−1 − 1) di operations. The matrix M has 2n − 1 proper pivotal transforms
and each of them has

(n
i

)
principal submatrices of size i , so

kn ≥
(

2n−1 − 1
)

dn + (2n − 1
) n−1∑

i=2

(
n

i

)(
2i−1 − 1

)
di ,

where di ≥ 2, therefore

kn ≥ 2n−1 + (2n − 1
) n−1∑

i=2

(
n

i

)
2i−1
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392 E. de Klerk, M. E.-Nagy

= 2n−1 + (2n − 1
) 1

2

[
n∑

i=0

(
n

i

)
2i −

(
n

0

)
20 −

(
n

1

)
21 −

(
n

n

)
2n

]

= 2n−1 + (2n − 1
) 1

2

[
3n − 1 − 2n − 2n

]

≥ 1

5
6n if n ≥ 3.

The drawback of the algorithm of Väliaho is that no upper bound on the handicap is
obtained before the algorithm terminates. Due to the complexity of Ω(6n) the algo-
rithm is therefore not practical if, say, n ≥ 15. In fact, our computational experience
with Algorithm 1 (see Sect. 7) is that it becomes impractical already for n ≥ 7. This
motivates our search for algorithms that can provide an upper bound on the handicap
in a reasonable time in the remainder of the paper.

5 Optimization models to compute the handicap

Our aim is to determine the handicap of a sufficient matrix, or at least give an upper
bound on it. For convenience, we define the handicap of a non-sufficient matrix as
infinity.

We have already mentioned, that the class of positive semidefinite matrices coin-
cides with P∗(0), so the handicap of a positive semidefinite matrix is 0. The positive
semidefiniteness can be determined in polynomial time. Indeed, the matrix M ∈ P SD
if and only if M+MT ∈ P SD, and the latter one is already symmetric, so we need only
check its eigenvalues. In the remainder of this section we construct different models
whose optimal values are all equal to the handicap of the matrix M . For the simplicity,
we write κ̂ instead of κ̂(M). In this section we use subscripts for κ̂ according from
which model it is determined.

Considering Definition 1 we get the following problem whose optimal value3 is
the handicap of the matrix M .

κ̂0 := inf
{
κ ≥ 0 : qκ(x) ≥ 0, ∀ x ∈ R

n}, (6)

where

qκ(x) := xT Mx + 4 κ
∑

I+
xi (Mx)i .

The function qκ is not a polynomial, therefore we reformulate the problem. Let
α j (x) = max{0, x j (Mx) j }, then

∑
I+ xi (Mx)i = ∑n

j=1 α j (x). Using the new

3 The optimal value of problem (6) without the constraint κ ≥ 0 can be negative for positive definite
matrices, for example it will be −0.25 for the identity matrix. Since the handicap is a nonnegative value by
definition, we add the constraint κ ≥ 0.
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On the complexity of computing the handicap of a sufficient matrix 393

variables, our model is the following

κ̂1 := inf
{
κ ≥ 0 : pκ(x, α) ≥ 0, ∀ (x, α) ∈ K1

}
, (7)

where

pκ(x, α) := xT Mx + 4 κ

n∑

i=1

αi , and

K1 = {(x, α) : α ≥ x ◦ Mx, α ≥ 0}.

This is an equivalent model in the sense that κ̂0 = κ̂1, moreover the feasible sets

F0 = {
κ ≥ 0 : qκ(x) ≥ 0 ∀ x ∈ R

n} and

F1 = {κ ≥ 0 : pκ(x, α) ≥ 0 ∀ x ∈ K1}

coincide. The inclusion F1 ⊆ F0 is a direct consequence of the idea behind the new
variable α. For the other direction, let κ ∈ F0 and (x, α) ∈ K1, then

pκ(x, α) = xT Mx + 4 κ

n∑

i=1

αi ≥ xT Mx + 4 κ
∑

I+
xi (Mx)i = qκ(x) ≥ 0,

so κ ∈ F1.
The constant term of the polynomial pκ is zero, moreover

pκ(x, α) = ‖x‖2 pκ

(
x

‖x‖ ,
α

‖x‖2

)

for all x �= 0. Therefore the following reformulation again has the same optimal value.

κ̂2 := inf
{
κ ≥ 0 : pκ(x, α) ≥ 0, ∀ (x, α) ∈ K2

}
, (8)

where

K2 = {(x, α) : ‖x‖ = 1, α ≥ x ◦ Mx, α ≥ 0} .

The variable α can also be bounded.

κ̂3 := inf {κ ≥ 0 : pκ(x, α) ≥ 0, ∀ (x, α) ∈ K3} , (9)

where

K3 = {(x, α) : ‖x‖ = 1, α ≥ x ◦ Mx, ‖α‖ ≤ ‖M‖2, α ≥ 0
}
.

Let us denote the feasible set of problem (8) and (9) by F2 and F3, respectively. Then
F2 ⊆ F3, because K3 ⊆ K2. Furthermore, if (x, α) ∈ K2, then ‖α(x)‖ ≤ ‖x ◦Mx‖ ≤
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394 E. de Klerk, M. E.-Nagy

‖x‖‖M‖‖x‖ = ‖M‖2, thus
(
x, α(x)

) ∈ K3. Additionally, pκ(x, α) ≥ pκ

(
x, α(x)

)
,

so F3 ⊆ F2. We can summarize the above in the following lemma.

Lemma 3 Let M ∈ R
n×n, then the optimal value of the models (6), (7), (8) and (9)

equal to the handicap of matrix M, namely κ̂0 = κ̂1 = κ̂2 = κ̂3 = κ̂(M).
Specifically, the problems (6), (7), (8) and (9) are infeasible if and only if the matrix
M is not sufficient.

Remark 2 The infima in problems (6), (7), (8) and (9) are always attained if M is
sufficient. Indeed, let {κi } ∈ F0 be such that limi→∞ κi = κ̂0. If κ̂0 /∈ F0, then there
is a point x̄ such, that qκ̂0(x̄) < 0. However, qκ(x̄) is a linear function of κ , thus
limi→∞ qκi (x̄) = qκ̂0(x̄) < 0, but this is a contradiction with qκi (x̄) ≥ 0. The proof
is similar for the other models.

6 A hierarchy of SDP relaxations

We will use the concept of Lasserre’s paper [8], namely we give a hierarchy of SDP
problems to compute the handicap. The optimal value of each SDP problem will be
an upper bound on the handicap.

We recall some notation from the literature of real algebraic geometry. The ring
of polynomials in the variables z, say, is denoted by R[z], and the cone of sum of
squares of polynomials is denoted by �. The quadratic module generated by func-
tions g1, . . . , gm is defined as

M(g1, . . . , gm) =
⎧
⎨

⎩s0 +
m∑

j=1

s j g j : s j ∈ �, j = 0, . . . , m

⎫
⎬

⎭ .

It is easy to see, that if a polynomial is in the quadratic module M(g1, . . . , gm),
then this polynomial is nonnegative on the set

{
z : g j (z) ≥ 0, j = 1, . . . , m

}
. For the

other direction of implication, we need a special property of the quadratic module.
The quadratic module M(g1, . . . , gm) is called Archimedean if there is a function
f ∈ M(g1, . . . , gm) such that the set {z : f (z) ≥ 0} is compact.

Theorem 4 (Putinar [12]) Let K = {z : g j (z) ≥ 0, j = 1, . . . , m
}

and assume, that
the quadratic module M(g1, . . . , gm) is Archimedean. For p ∈ R[z], if p > 0 on K
then p ∈ M(g1, . . . , gm).

Let us take into consideration the problem (9). In this case K = K3 ⊂ R
2n , and it

is defined by 2n + 3 functions:
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gi (x, α) = αi − xi (Mx)i , i = 1, . . . , n,

gn+i (x, α) = αi , i = 1, . . . , n,

g2n+1(x, α) = 1 −
n∑

i=1

x2
i ,

g2n+2(x, α) = −1 +
n∑

i=1

x2
i ,

g2n+3(x, α) = ‖M‖2
2 −

n∑

i=1

α2
i .

Let f = g2n+1 + g2n+3 ∈ M(g1, . . . , g2n+3). For this function the set

{(x, α) ∈ R
2n : 1 + ‖M‖2

2 − ‖(x, α)‖2 ≥ 0}

is compact, so the quadratic module is Archimedean (see for example [9, p. 186]),
thus

pκ(x, α) > 0 on K3 �⇒ pκ ∈ M(g1, . . . , g2n+3). (10)

Note that we require the positivity of pκ as opposed to the nonnegativity requirement
in (9). However, we prove in the next lemma that the model is still correct if we replace
nonnegativity by positivity in the case of P-matrices.

Lemma 4 Let M be a P-matrix. Then

κ̂(M) = inf
{
κ ≥ 0 : pκ(x, α) > 0,∀ (x, α) ∈ K3

}
.

Proof Let

F̂3 = {κ ≥ 0 : pκ(x, α) > 0,∀ (x, α) ∈ K3
}
,

and remember F3 = {κ ≥ 0 : pκ(x, α) ≥ 0,∀ (x, α) ∈ K3}. By definition, F̂3 ⊂ F3,
therefore infF3 κ ≤ infF̂3

κ .
On the other hand, if M is a P-matrix, then

∑
I+ xi (Mx)i > 0 for every nonzero

x by Lemma 1. Thus
∑n

i=1 αi ≥ ∑
I+ xi (Mx)i > 0 for all (x, α) ∈ K3. Therefore,

if pκ(x, α) ≥ 0 for some (x, α) ∈ K3, then pκ+ε(x, α) > 0 for all ε > 0. In other
words,4

κ ∈ F3 �⇒ κ + ε ∈ F̂3 ∀ ε > 0. (11)

According Remark 2,

κ̂ = min {κ ≥ 0 : pκ(x, α) ≥ 0,∀ (x, α) ∈ K3},

4 The converse implication is also true in (11).
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namely κ̂ ∈ F3. Hence by (11), there is a sequence in F̂3, which tends to κ̂ (for
example, κ̂ + 1/t, t → ∞), so infF̂3

κ ≤ κ̂ , which completes the proof. ��
Lemma 4 and the implication (10) mean, that if the matrix M is a P-matrix, then

κ̂ = inf{κ : pκ ∈ M(g1, . . . , g2n+3)}. The quadratic module can be described with
SDP constraints, however the dimension of the problem will be infinite. Therefore, a
hierarchy of SDP relaxations is used that corresponds to a sequence of truncated SOS
problems. In our case the truncated SOS problem in order t is the following:

κ(t) := inf κ

s.t.

xT Mx + 4κ

n∑

i=1

αi = s0(x, α) +
n∑

j=1

(
α j − x j (Mx) j

)
s j (x, α)

+
n∑

j=1

α j sn+ j (x, α) +
⎛

⎝‖M‖2
2 −

n∑

i=1

α2
i

⎞

⎠ s2n+1(x, α)

+
⎛

⎝1 −
n∑

i=1

x2
i

⎞

⎠ r(x, α)

s j (x, α) ∈ �, j = 0, . . . , 2n + 1
deg(s0) ≤ 2t,
deg(s j ) ≤ 2t − 2, j = 1, . . . , 2n + 1

r ∈ R[x, α], deg(r) ≤ 2t − 2
κ ≥ 0.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)

We mention that the SDP formulation of problem (12) may be solved in

O
((n+2t

2t

)4.5
ln(L/ε)

)
operations to obtain an ε-approximation of κ(t) by using inte-

rior point methods.
One can see, that the feasibility regions of the truncated SOS problems expand

as t increases, namely F (t) ⊆ F (t+1), where F (t) is the set of feasible solutions of
truncated SOS problem in order t . Details on the SDP reformulation of SOS problems
like problem (12) may be found in the paper by Lasserre [8], or in the more recent
survey paper [9]. Here we only mention that the optimal value κ(t) may be computed
to any fixed precision in polynomial time for fixed values of t by using the interior
point methods for SDP to solve an SDP reformulation of (12).

We can summarize the results of this section in the following theorem.

Theorem 5 Let M ∈ R
n×n with handicap κ̂(M) (κ̂(M) := ∞ if M is not sufficient),

and let κ(t) be defined as in (12) (κ(t) = ∞ if problem (12) is infeasible). Then:

– κ(t) = ∞ for all t ∈ N if M is not sufficient;
– κ(t) ≥ κ(t+1) ≥ κ̂(M) if κ(t) is finite;
– κ̂(M) = limt→∞ κ(t) if M is a P-matrix;
– 0 = κ̂(M) = κ(1) if M is PSD.

In words, if κ(t) is finite for some t , then this certifies that M is sufficient. On the other
hand, we only have the guarantee that κ(t) will be finite (for sufficiently large t) in
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the cases of PSD and P-matrices. Moreover, in the case of P-matrices, κ(t) may only
become finite for large values of t , since it is NP-hard to decide if M is a P-matrix.

We will still show that κ(1) = κ̂(M) if M ∈ R
2×2. Unfortunately, this nice property

does not hold in higher dimensions: we will also present a 3 × 3 sufficient matrix for
which the truncated SOS problem with order one is not feasible, i.e. where κ̂(M) is
finite but κ(1) = ∞.

It remains a topic for future research to try and obtain additional finite convergence
results, i.e. κ(t) = κ̂(M) for some finite value of t . However, finite convergence results
are a bit problematic for the Lasserre hierarchy in general: results are only known for
convex problems, and for problems where the feasible set is finite; see Laurent [9] for
a survey of these results.

6.1 The first order SOS relaxation

For the first order Relaxation the polynomial s0 in (12) is at most quadratic, and the
si (i = 1, . . . , 2n + 1) are nonnegative numbers and r is a real number. By setting
(x, α) = 0, we conclude that s0(0, 0)+s2n+1+r = 0, so r ≤ 0. Furthermore, there are
no mixed terms xiα j on the left hand side of the first constraint in (12), and on the right
hand side such a term can appear only in s0. Therefore, s0(x, α) = s01(x) + s02(α),
where s01 and s02 are also sums of squares and we can assume without loss of general-
ity that s02(0) = 0. Similarly, on the left hand side there are no linear terms x j , and on
the right hand side such terms can only appear in s01. Therefore s01(x) = s03(x)+ c2,
where s03 is also SOS, s03(0) = 0 and c is a real number. Indeed, let s01 =∑ q2

i , then
every qi is linear. Let us decompose qi = q̄i + ci , where q̄i (0) = 0 and ci is a real
number. Thus s01 = ∑

(q̄i + c1)
2 = ∑

q̄2
i +∑ c2

i + 2
∑

ci q̄i , where the last term
has to be zero since s01 is free of linear terms.

The first constraint of problem (12) has to hold for α = 0 as well, so we search for
a quadratic SOS polynomial s0, nonnegative numbers si (i = 1, . . . , n, 2n + 1) and a
real number r such that the following equality holds for all x :

xT Mx = s03(x) + c2 −
n∑

i=1

si xi (Mx)i + s2n+1‖M‖2
2 + r

(
1 −

n∑

i=1

x2
i

)
. (13)

By rearranging the equality (13) and using that the sum of constant terms is zero, we
get the following constraint:

n∑

i=1

(si + 1) xi (Mx)i = s03(x) − r
n∑

i=1

x2
i ∀ x . (14)

Let S be the diagonal matrix, whose i th diagonal element is si + 1. Then the left hand
side of (14) is xT SMx . Furthermore, it is a quadratic polynomial of x and it has to
be a SOS (recall r ≤ 0), which equivalently means that the left hand side has to be
nonnegative for all x . Summarizing these observations leads to the following lemma.
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Lemma 5 The first order (t = 1) SOS relaxation (12) is feasible if and only if there
are positive numbers di (i = 1, . . . , n) such that the matrix DM is PSD (we do not
require the symmetry of the matrix), where D = diag(d1, . . . , dn).

Proof We have already proved the ‘only if’ part.
Now let us assume that there is a positive diagonal matrix D = diag(d) such

that DM is PSD. If min di < 1, then let D̃ = 1/(min di ) D, namely, D̃ = diag(d̃),
where d̃ = 1/(min di ) d. Otherwise, let D̃ = D. Since min di > 0, the matrix D̃ is
well defined, it is still positive diagonal matrix, and D̃M is PSD. Then xT D̃Mx is a
nonnegative quadratic polynomial, so it is an SOS. Therefore

s0 = xT D̃Mx,

si = d̃i − 1 i = 1, . . . , n,

κ = 0.25 max
i=1,...,n

si ,

sn+i = 4κ − si i = 1, . . . , n,

s2n+1 = 0,

r = 0

is a feasible solution of the first order SOS relaxation. ��
Remark 3 It is easy to see directly, that if D is a positive diagonal matrix such that
min di ≥ 1 and DM is PSD, then M is a P∗(κ)-matrix with κ = 0.25(max d j − 1).
Indeed,

(max d j )
∑

I+
xi (Mx)i +

∑

I−
xi (Mx)i ≥

n∑

i=1

di xi (Mx)i ≥ 0 ∀ x ∈ R
n .

In connection with Lemma 5, one may ask whether the set of matrices, for which
the first order relaxation is already feasible, is a convex cone. The answer is no, it is
a cone, but not convex. Indeed, the set in question is

H = {M ∈ R
n×n : ∃ S ∈ R

n×n positive diagonal matrix such that SM ∈ P SD
}
.

This set contains the zero matrix and H is closed under positive scalar multiplication,
so it is a cone. On the other hand, let

M1 =
⎛

⎝
1 0 10
0 0 0
0 0 1

⎞

⎠ and M2 =
⎛

⎝
9 0 0

30 10 0
0 30 9

⎞

⎠ .

M̃1 = diag(1, 1, 25) · M1 =
⎛

⎝
1 0 10
0 0 0
0 0 25

⎞

⎠ , eig(M̃1 + M̃T
1 ) = {0, 0, 52}, so M1 ∈ H.

M̃2 = diag(25, 5, 1) · M2 =
⎛

⎝
225 0 0
150 50 0

0 30 9

⎞

⎠ , eig(M̃2 + M̃T
2 ) = {0, 62.3, 505.7},
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so M2 ∈ H. The set H is convex if and only if H+H = H (since the set H is a cone).
We show, that the sum of the previous two matrices does not belong to H.

M3 = M1 + M2 =
⎛

⎝
10 0 10
30 10 0
0 30 10

⎞

⎠ .

Let us assume, that there is a positive diagonal matrix D = diag(d1, d2, d3) such that
DM3 is P SD. As we have already mentioned, a matrix A is PSD if and only if A+ AT

is PSD. Additionally, a symmetric matrix is PSD if and only if its all principal minors
are nonnegative. Since

DM3 + (DM3)
T =

⎛

⎝
20d1 30d2 10d1
30d2 20d2 30d3
10d1 30d3 20d3

⎞

⎠ ,

the diagonal elements of DM3 + (DM3)
T are positive. From the two dimensional

principal minors we have

4 d1d2 − 9 d2
2 ≥ 0 �⇒ 4 d1 ≥ 9 d2,

4 d2d3 − 9 d2
3 ≥ 0 �⇒ 4d2 ≥ 9 d3,

4 d1d3 − d2
1 ≥ 0 �⇒ 4 d3 ≥ d1.

From the last two inequalities we get that d2 ≥ 9/16 d1, but it is contrary to the
first inequality, because di (i = 1, 2, 3) are positive numbers.

The matrix M3 is a P-matrix with handicap κ̂(M3) = 0.91886 (we will show this
numerically later on), so by Lemma 5, the first order relaxation is not feasible for every
P-matrix.

6.1.1 Two dimensional problem

Now let us examine the two dimensional case, i.e., M ∈ R
2×2. Without loss of gen-

erality we may assume that |m12| ≤ |m21|. Recall from (4) that the handicap of a
sufficient, but not PSD 2 × 2 matrix M is

κ̂(M) = 1

4

[
m2

21(√
m11 m22 + √

m11 m22 − m12 m21
)2 − 1

]
.

Let s1 = 4κ̂ and s2 = 0. We claim that the matrix SM is PSD. It is trivial if the matrix
M is positive semidefinite (in this case κ̂ = 0). Now let assume, that M is sufficient
but not PSD. We use the following equivalence in our proof:

(
a b
c d

)
∈ P SD ⇐⇒ a, d ≥ 0

(b + c)2 ≤ 4 ad.
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The diagonal elements of SM are nonnegative, because M is a sufficient matrix, so
m11 and m22 are nonnegative numbers, and the diagonal elements of S are positive.
The third inequality holds as well. Indeed:

(s1 + 1) m12 + m21 = m12 m2
21 + m21

(√
m11 m22 + √

m11 m22 − m12 m21
)2

(√
m11 m22 + √

m11 m22 − m12 m21
)2 ,

and, using the identity

m12 m21

= (√m11m22 − √
m11 m22 − m12 m21

) (√
m11m22 + √

m11 m22 − m12 m21
)
,

one obtains

((s1 + 1) m12 + m21)
2

=
(

2 m21
√

m11 m22
(√

m11 m22 + √
m11 m22 − m12 m21

)
(√

m11 m22 + √
m11 m22 − m12 m21

)2

)2

= 4(s1 + 1) m11 m22.

Lemma 6 Let M ∈ R
2×2 be a sufficient matrix. Then the first order SOS relaxation

((12) with t = 1) is feasible and its optimal value is κ(1) = κ̂(M).

7 Numerical examples

In this section we present some preliminary computational results for computing
the upper bound κ(t) from (12) on the handicap. We solved the problem (12) with
Gloptipoly 3.4 [4] using the SDP solver SeDuMi 1.1R3 [13]. The return status of
Gloptipoly can be −1, 0 or 1. The meaning of the status in our case is the following:

status = −1: The truncated SOS problem is infeasible or the SDP solver has
numerical problems.

status = 0: The value κ(t) is an upper bound on the handicap.
status = 1: The value κ(t) equals the handicap.

It is important to note that status=1 means that a certificate is obtained that κ(t)

equals the handicap. This certificate is obtained from the dual SDP problem of (12);
the details are beyond the scope of this paper, but may be found in Sect. 6 of [9].

In Table 2 below, we present the status (s), the bound κ(t) from (12), and the com-
putational time (in seconds) with different orders of relaxations (t = 1, 2, . . .) for
seven different matrices. The matrices M1, M2 and M3 are from Sect. 6.1, while M4
and M5 are related to the paper of Väliaho [16]:

M4 =
⎛

⎝
4 1 1
2 1 −2

−4 3 1

⎞

⎠ and M5 =
⎛

⎝
4 1 2
2 1 −2

−4 3 1

⎞

⎠ .
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Table 2 Numerical results for computing handicap of the matrices M1, . . . , M7

Order of SOS relaxation Väliaho’s
algorithm

1 2 3 4

M1 s = 0 s = 0 s = 0 s = 0 κ̂ = 6
κ(1) = 6 κ(2) = 6 κ(3) = 5.99 κ(4) = 5.99 0.1s
0.2s 0.8s 19.3s 636.7s

M2 s = 0 s = 1 – – κ̂ = 6
κ(1) = 6 κ(2) = 6 0.3s
0.2s 0.6s

M3 s = −1 s = 1 – – κ̂ = 0.91886
κ(1) = ∞ (infeasible) κ(2) = 0.91886 0.3s
0.2s 0.5s

M4 s = 0 s = 1 – – κ̂ = 0.08986
κ(1) = 0.08986 κ(2) = 0.08986 0.6s
0.1s 0.4s

M5 s = 0 s = 1 – – κ̂ = 0.03987
κ(1) = 0.03987 κ(2) = 0.03987 0.6s
0.2s 0.4s

M6 s = 0 s = 1 – – κ̂ = 15.75
κ(1) = 15.75 κ(2) = 15.75 1737.7s
0.3s 138.7s

M7 s = 0 s = 1 – – –
κ(1) = 0.039866 κ(2) = 0.039866 >12h
0.3 413.1s

The matrix M6 is a 6-by-6 matrix of the type (3). The last matrix is the following

M7 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 −2 0 0
0 1 0 −1 0 0 0
0 0 1 0 0 2 −2
0 1 0 1 0 0 0
5 0 0 0 2 0 0
0 0 −1 0 0 2 4
0 0 −3 0 0 −10 7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The final column in Table 2 gives the solution times for our own Matlab imple-
ntation of Algorithm 1, i.e. of the algorithm by Väliaho [16]. In the table, the value of
the handicap is certified by the second order relaxation (i.e. κ(2) = κ̂(M)) for all the
examples except M1. For the matrix M1, one has κ(1) = κ̂(M) = 6, but Gloptipoly
fails to certify this. Moreover, the values κ(3) and κ(4) should equal 6 as well, and the
inaccuracies seen in the table are due to limited accuracy in the solution of the under-
lying SDP problems. Also note that the running time increases exponentially with the
order t for M1—this is a consequence of the size of the underlying SDP problems,
where the matrix variables are of order nt .
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402 E. de Klerk, M. E.-Nagy

Note also, that Väliaho’s algorithm (Algorithm 1) requires a prohibitive amount of
time to compute the handicap, already if n = 7.

In conclusion, computing the values κ(t) in (12) for small t is a practical alternative
to using the exact algorithm by Väliaho [16], if the goal is to obtain an upper bound
on the handicap of a sufficient matrix.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

References

1. Fiedler, M., Pták, V.: On matrices with non-positive off-diagonal elements and positive principal
minors. Czech. Math. J. 12, 382–400 (1962)

2. Guu, S.M.: Sign reversing and matrix classes. J. Optim. Theory Appl. 89(2), 373–387 (1996)
3. Guu, S.M., Cottle, R.W.: On a subclass of P0. Linear Algebra Appl. 223(224), 325–335 (1995)
4. Henrion, D., Lasserre, J.-B., Löfberg, J.: Gloptipoly 3: moments, optimization and semidefinite pro-

gramming. (2008) http://homepages.laas.fr/henrion/papers/gloptipoly3.pdf
5. Illés, T., Peng, J., Roos, C., Terlaky, T.: A strongly polynomial rounding procedure yielding a max-

imally complementary solution for P∗(κ) linear complementarity problems. SIAM J. Optim. 11(2),
320–340 (2000)

6. Kojima, M., Mizuno, S., Yoshise, A.: A polynomial-time algorithm for a class of linear complementary
problems. Math. Program. 44, 1–26 (1989)

7. Kojima, M., Megiddo, N., Noma, T., Yoshise, A.: A Unified Approach to Interior Point Algorithms for
Linear Complementarity Problems. vol. 538 of Lecture Notes in Computer Science. Springer, Berlin
(1991)

8. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optimiza-
tion. 11, 796–817 (2001)

9. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M.,
Sullivant, S., (eds.) Emerging Applications of Algebraic Geometry, vol. 149 in IMA Volumes in
Mathematics and its Applications. Springer, pp. 157–270 (2009). Updated version available at: http://
homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf

10. Megiddo, N.: A Note on the Complexity of P-Matrix LCP and Computing an Equilibrium. Research
Report RJ 6439. IBM Almaden Research Center, San Jose, California (1988)

11. Potra, F.A., Liu, X.: Predictor-corrector methods for sufficient linear complementarity problems in a
wide neighborhood of the central path. Optim. Methods Softw. 20(1), 145–168 (2005)

12. Putinar, M.: Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math. J. 42,
969–984 (1993)

13. Sturm, J.F.: Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim.
Methods Softw. 11(12), 625–653 (1999)

14. Tseng, P.: Co-NP-completeness of some matrix classification problems. Math. Program. 88, 183–192
(2000)

15. Väliaho, H.: P∗-matrices are just sufficient. Linear Algebra Appl. 239, 103–108 (1996)
16. Väliaho, H.: Determining the handicap of a sufficient matrix. Linear Algebra Appl. 253, 279–298 (1997)
17. Vavasis, S.A.: Quadratic programming is in NP. Inf. Process. Lett. 36(2), 73–77 (1990)

123

http://homepages.laas.fr/henrion/papers/gloptipoly3.pdf
http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf
http://homepages.cwi.nl/~monique/files/moment-ima-update-new.pdf

	On the complexity of computing the handicap of a sufficient matrix
	Abstract
	1 Introduction
	1.1 Outline of the paper
	1.2 Notation

	2 A review of matrix classes and complexity results
	2.1 Matrix classes
	2.2 Complexity of LCP for the various matrix classes

	3 How large can the handicap (M) be in terms of L(M)?
	4 The computational complexity of Väliaho's algorithm
	5 Optimization models to compute the handicap
	6 A hierarchy of SDP relaxations
	6.1 The first order SOS relaxation
	6.1.1 Two dimensional problem


	7 Numerical examples
	References


