3,274 research outputs found

    'Ephemerality’ in game development: opportunitiees and challenges

    Get PDF
    Ephemeral Computation (Eph-C) is a newly created computation paradigm, the purpose of which is to take advantage of the ephemeral nature (limited lifetime) of computational resources. First we speak of this new paradigm in general terms, then more specifically in terms of videogame development. We present possible applications and benefits for the main research fields associated with videogame development. This is a preliminary work which aims to investigate the possibilities of applying ephemeral computation to the products of the videogame industry. Therefore, as a preliminary work, it attempts to serve as the inspiration for other researchers or videogame developers.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    A simple analytical description of the non-stationary dynamics in Ising spin systems

    Get PDF
    The analytical description of the dynamics in models with discrete variables (e.g. Isingspins) is a notoriously difficult problem, that can be tackled only undersome approximation.Recently a novel variational approach to solve the stationary dynamical regime has beenintroduced by Pelizzola [Eur. Phys. J. B, 86 (2013) 120], where simpleclosed equations arederived under mean-field approximations based on the cluster variational method. Here wepropose to use the same approximation based on the cluster variational method also for thenon-stationary regime, which has not been considered up to now within this framework. Wecheck the validity of this approximation in describing the non-stationary dynamical regime ofseveral Ising models defined on Erdos-R ́enyi random graphs: westudy ferromagnetic modelswith symmetric and partially asymmetric couplings, models with randomfields and also spinglass models. A comparison with the actual Glauber dynamics, solvednumerically, showsthat one of the two studied approximations (the so-called ‘diamond’approximation) providesvery accurate results in all the systems studied. Only for the spin glass models we find somesmall discrepancies in the very low temperature phase, probably due to the existence of alarge number of metastable states. Given the simplicity of the equations to be solved, webelieve the diamond approximation should be considered as the ‘minimalstandard’ in thedescription of the non-stationary regime of Ising-like models: any new method pretending toprovide a better approximate description to the dynamics of Ising-like models should performat least as good as the diamond approximation

    Robust Model Predictive Control for Spacecraft Rendezvous with Online Prediction of Disturbance Bounds

    Get PDF
    IFAC Workshop Aerospace Guidance, Navigation and Flight Control Systems (AGNFCS' 09) Samara, RUSSIA June 30 - July 2, 2009A Model Predictive Controller is introduced to solve the problem of rendezvous of spacecraft, using the HCW model and including additive disturbances and line-of-sight constraints. It is shown that a standard MPC is not able to cope with disturbances. Then a robust Model Predictive Control that introduces the concepts of robust satisfaction of constraints is proposed. The formulation also includes a predictor of the disturbance properties which are needed in the robust algorithm. In simulations it is shown that the robust MPC scheme is able to handle not only additive disturbances (which are the ones used in the formulation) but also large multiplicative disturbances and unmodelled dynamics (due to eccentricity of the orbit of the target spacecraft)

    Model Predictive Control for Spacecraft Rendezvous in Elliptical Orbits with On/Off Thrusters

    Get PDF
    IFAC Workshop on Advanced Control and Navigation for Autonomous Aerospace Vehicles. 08/06/2015. SevillaIn previous works, the authors have developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, for circular and eccentric Keplerian orbits. The algorithm is initialized by solving the impulsive problem first and then, using explicit linearization and linear programming, the solution is refined until a (possibly local) optimal value is reached. However, trajectory planning cannot take into account orbital perturbations, disturbances or model errors. To overcome these issues, in this paper we develop a Model Predictive Control (MPC) algorithm based on the open-loop PWM planner and test it for elliptical target orbits with arbitrary eccentricity (using the linear time-varying Tschauner-Hempel model). The MPC is initialized by first solving the open-loop problem with the PWM trajectory planning algorithm. After that, at each time step, our MPC saves time recomputing the trajectory by applying the iterative linearization scheme of the trajectory planning algorithm to the solution obtained in the previous time step. The efficacy of the method is shown in a simulation study where it is compared to MPC computed used an impulsive-only approach

    Trajectory Planning for Spacecraft Rendezvous in Elliptical Orbits with On / Off Thrusters

    Get PDF
    The 19th World Congress of the International Federation of Automatic Control 2014 Cape Town, SudáfricaIn a previous work, the authors developed a trajectory planning algorithm for spacecraft rendezvous which computed optimal Pulse-Width Modulated (PWM) control signals, assuming that the target was moving in a circular Keplerian orbit. In this paper we extend the algorithm to the case of an elliptical target orbit with arbitrary eccentricity. Since the orbit is elliptical, the linear time-varying Tschauner-Hempel model is used, whose exact solution is possible by using true (or eccentric) anomaly instead of time (which is directly related to both via Kepler's equation). Unlike in the circular case, computing the PWM solution itself requires numerical integration. However, explicit linearization around the computed solution turns out to be possible and is exploited for rapidly improving the solution using linear programming (LP) techniques. The algorithm is initialized by solving the impulsive problem first; the impulses are converted to PWM signals, which are used as an initial guess. Using the explicit linearization and LP, the solution is refined until a (possibly local) optimal value is reached. The efficacy of the method is shown in a simulation study where it is compared to the impulsive-only approach

    Trajectory Planning for Spacecraft Rendezvous with On / Off Thrusters

    Get PDF
    18th World CongressThe International Federation of Automatic ControlMilano (Italy) August 28 - September 2The objective of this work is to present a trajectory planning algorithm for spacecraft rendezvous that is able to incorporate Pulse-Width Modulated (PWM) control signals. The algorithm is based on linearization around a previously computed solution. To initialize the algorithm, a first solution needs to be obtained. To do so, the trajectory planning problem is solved using Pulse-Amplitude Modulated (PAM) control signals; these are then converted to PWM signals, which are used as an initial guess. Iterating, the solution is refined until an optimal value is reached. Simulations show that this method converges after a few iterations. The algorithm is simple and fast, hence it could be implemented online or used together with a Model Predictive Controller

    Pulse-width predictive control for LTV systems with application to spacecraft rendezvous

    Get PDF
    This work presents a Model Predictive Controller (MPC) that is able to handle Linear Time-Varying (LTV) plants with Pulse-Width Modulated (PWM) control. The MPC is based on a planner that employs a Pulse-Amplitude Modulated (PAM) or impulsive approximation as a hot-start and then uses explicit linearization around successive PWM solutions for rapidly improving the solution by means of quadratic programming. As an example, the problem of rendezvous of spacecraft for eccentric target orbits is considered. The problem is modeled by the LTV Tschauner–Hempel equations, whose state transition matrix is explicit; this is exploited by the algorithm for rapid convergence. The efficacy of the method is shown in a simulation study.Ministerio de Economía y Competitividad DPI2008–05818Ministerio de Economía y Competitividad MTM2015-65608-
    corecore