7 research outputs found

    A munkamegosztás ezer arca és egy modellje

    Get PDF

    Behavioral Specialization During the Neolithic—An Evolutionary Model

    Get PDF
    The emergence of agriculture and complex societies during the Near Eastern Neolithic opened a new era in human evolution. Food production seriously affected the ecological environment, and societies answered this challenge with large-scale division of labor and specialization. In this paper we study this transition with an individual based model. Our model captures the connections between the appearance of agriculture, the social division of labor, and human behavioral diversity. Our two main settings are different habitats: in the pre-Neolithic habitat, resources fluctuated in time and there was no large-scale food storage. In the Neolithic habitat active food production resulted in economic surplus. We consider a sexually reproducing social group, in which individuals solve different tasks for survival. We assume that the task-solving effectiveness has a partial genetic basis but also improves with experience and learning. Since different tasks can require somewhat different skills, we assume trade-offs between genetic propensities for different tasks. Individuals are born with inherited task-choice strategies that they can improve by imitating more successful peers. We show that for the Neolithic case, both phenotypic specialization (task choice strategy) and the emergence of genetic polymorphism are possible, as long as scarcer goods are more valuable. As the number of tasks increases, specialization can evolve only in very large groups. Although phenotypic specialization often emerges in our model, the emergence of genetic polymorphism requires strong assortativity during both imitation and mate choice. In sum, our model shows that if an economic surplus becomes available, behavioral specialization and large-scale division of labor are likely to appear. Thus, our model can help understanding certain aspects of the Neolithic transition, and may have implications for the present genetic polymorphism, too

    Evolution of heritable behavioural differences in a model of social division of labour

    Get PDF
    The spectacular diversity of personality and behaviour of animals and humans has evoked many hypotheses intended to explain its developmental and evolutionary background. Although the list of the possible contributing mechanisms seems long, we propose that an underemphasised explanation is the division of labour creating negative frequency dependent selection. We use analytical and numerical models of social division of labour to show how selection can create consistent and heritable behavioural differences in a population, where randomly sampled individuals solve a collective task together. We assume that the collective task needs collaboration of individuals performing one of the two possible subtasks. The total benefit of the group is highest when the ratio of different subtasks is closest to 1. The probability of choosing one of the two costly subtasks and the costs assigned to them are under selection. By using adaptive dynamics we show that if a trade-off between the costs of the subtasks is strong enough, then evolution leads to coexistence of specialized individuals performing one of the subtasks with high probability and low cost. Our analytical results were verified and extended by numerical simulations
    corecore