97 research outputs found

    Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation

    Get PDF
    The products of a Hungarian experimental plantation for energy crops were investigated. Young shoots of poplar clones (Populus x euramericana and Populus x interamericana), black locust (Robinia pseudoacacia), willow (Salix alba), and an herbaceous plant (Miscanthus sinensis) revealed unexpectedly similar thermal behavior in inert and oxidative atmospheres, as well. An 8-fold difference in the level of grinding did not result in substantial differences in the thermal decomposition. The effect of oxygen in the ambient gas was studied at low sample masses (0.2-0.4 mg) that excluded the overheating due to the high reaction heat of the combustion process. The presence of oxygen affects the decomposition from ca. 220 degreesC. Nevertheless, the extrapolated onset temperature of the hemicellulose decomposition is practically the same at 0, 5, and 21 V/V% oxygen. A group of 12 experiments, representing two grinding levels, three plant genera and four different heating programs were evaluated simultaneously by the method of least squares employing the model of independent pseudocomponents. All evaluated experiments were well described by the same set of kinetic parameters; only the parameters describing the peak area of the partial processes differed. A technique was recommended for the appropriate handling of the nonrandom errors in the simultaneous evaluation of experiment series

    Kinetic Behavior of Torrefied Biomass in an Oxidative Environment

    Get PDF
    The combustion of four torrefied wood samples and their feedstocks (birch and spruce) was studied at slow heating programs, under well-defined conditions by thermogravimetry (TGA). Particularly low sample masses were employed to avoid the self-heating of the samples due to the huge reaction heat of the combustion. Linear, modulated and constant-reaction rate (CRR) temperature programs were employed in the TGA experiments in gas flows of 5 and 20% O2. In this way the kinetics was based on a wide range of experimental conditions. The ratio of the highest and lowest peak maxima was around 50 in the experiments used for the kinetic evaluation. A recent kinetic model of Várhegyi et al. [Energy & Fuels 2012, 26, 1323-1335] was employed with modifications. This model consists of two devolatilization reactions and a successive char burn-off reaction. The cellulose decomposition in the presence of oxygen has a self-accelerating (autocatalytic) kinetics. The decomposition of the non-cellulosic parts of the biomass was described by a distributed activation model. The char burn-off was approximated by power-law (n-order) kinetics. Each of these reactions has its own dependence on the oxygen concentration that was expressed by power-law kinetics, too. The complexity of the applied model reflects the complexity of the studied materials. The model contained 15 unknown parameters for a given biomass. Part of these parameters could be assumed common for the six samples without a substantial worsening of the fit quality. This approach increased the average experimental information for an unknown parameter by a factor of 2 and revealed the similarities in the behavior of the different samples

    Thermal Decomposition Kinetics of Woods with an Emphasis on Torrefaction

    Get PDF
    The pyrolysis kinetics of Norwegian spruce and birch wood was studied to obtain information on the kinetics of torrefaction. Thermogravimetry (TGA) was employed with nine different heating programs, including linear, stepwise, modulated and constant reaction rate (CRR) experiments. The 18 experiments on the 2 feedstocks were evaluated simultaneously via the method of least-squares. Part of the kinetic parameters could be assumed common for both woods without a considerable worsening of the fit quality. This process results in better defined parameters and emphasizes the similarities between the woods. Three pseudo-components were assumed. Two of them were described by distributed activation energy models (DAEMs), while the decomposition of the cellulose pseudo-component was described by a self-accelerating kinetics. In another approach, the three pseudo-components were described by n-order reactions. Both approaches resulted in nearly the same fit quality, but the physical meaning of the model, based on three n-order reactions, was found to be problematic. The reliability of the models was tested by checking how well the experiments with higher heating rates can be described by the kinetic parameters obtained from the evaluation of a narrower subset of 10 experiments with slower heating. A table of data was calculated that may provide guidance about the extent of devolatilization at various temperature residence time values during wood torrefaction

    CO2 gasification of chars prepared from wood and forest residue

    Get PDF
    The CO2 gasification of chars prepared from Norway spruce and its forest residue was investigated in a thermogravimetric analyzer (TGA) at slow heating rates. The volatile content of the samples was negligible; hence the gasification reaction step could be studied alone, without the disturbance of the devolatilization reactions. Six TGA experiments were carried out for each sample with three different temperature programs in 60 and 100% CO2. Linear, modulated, and constant-reaction rate (CRR) temperature programs were employed to increase the information content available for the modeling. The temperatures at half of the mass loss were lower in the CRR experiments than in the other experiments by around 120 degrees C. A relatively simple, well-known reaction kinetic equation described the experiments. The dependence on the reacted fraction as well as the dependence on the CO2, concentration were described by power functions (n-order reactions). The evaluations were also carried out by assuming a function of the reacted fraction that can mimic the various random pore/random capillary models. These attempts, however, did not result in an improved fit quality. Nearly identical activation energy values were obtained for the chars made from wood and forest residues (221 and 218 kJ/mol, respectively). Nevertheless, the forest residue char was more reactive; the temperatures at half of the mass loss showed 20-34 degrees C differences between the two chars at 10 degrees C/min heating rates. The assumption of a common activation energy, E, and a common reaction order, v, on the CO2, concentration for the two chars had only a negligible effect on the fit quality

    CO2 Gasification of Biomass Chars: A Kinetic Study

    Get PDF
    The CO2 gasification of pine and birch charcoals was studied by thermogravimetric analysis (TGA) at CO2 partial pressures of 51 and 101 kPa. Linear and stepwise heating programs were employed to increase the information content of the experimental data sets. Low sample masses were used because of the high enthalpy change. Seven experiments with different experimental conditions were evaluated simultaneously for each sample. The method of least-squares was employed. Three reactions appeared in the temperature domain evaluated (600-1000 degrees C). The first and second reactions were due to the devolatilization and did not show a significant dependence upon the CO2 concentration. They were approximated by first-order kinetics. The third reaction corresponded to the gasification. Its modeling was based on an empirical approximation of the change of the reaction surface during the gasification and by a formal reaction order with respect to the CO2 concentration. Very close results were obtained for the two charcoals. The dependence upon the conversion could be well-approximated by power law kinetics. In the next step of the evaluation, the experiments of the two samples (14 experiments combined) were evaluated together, assuming common activation energy values and a common reaction order with respect to the CO2 concentration. This process led to nearly the same fit as the separate evaluation of the two samples. The activation energy of the gasification step was 262 kJ/mol. The reaction order of CO2 was 0.40

    Co-firing of biomass with coals Part 1. Thermogravimetric kinetic analysis of combustion of fir (abies bornmulleriana) wood

    Get PDF
    The chemical composition and reactivity of fir (Abies bornmulleriana) wood under non-isothermal thermogravimetric (TG) conditions were studied. Oxidation of the wood sample at temperatures near 600 A degrees C caused the loss of aliphatics from the structure of the wood and created a char heavily containing C-O functionalities and of highly aromatic character. On-line FTIR recordings of the combustion of wood indicated the oxidation of carbonaceous and hydrogen content of the wood and release of some hydrocarbons due to pyrolysis reactions that occurred during combustion of the wood. TG analysis was used to study combustion of fir wood. Non-isothermal TG data were used to evaluate the kinetics of the combustion of this carbonaceous material. The article reports application of Ozawa-Flynn-Wall model to deal with non-isothermal TG data for the evaluation of the activation energy corresponding to the combustion of the fir wood. The average activation energy related to fir wood combustion was 128.9 kJ/mol, and the average reaction order for the combustion of wood was calculated as 0.30
    corecore