103 research outputs found

    Possible phases of two coupled n-component fermionic chains

    Full text link
    A two-leg ladder with nn-component fermionic fields in the chains has been considered using an analytic renormalization group method. The fixed points and possible phases have been determined for generic filling as well as for a half-filled system and for the case when one of the subbands is half filled. A weak-coupling Luttinger-liquid phase and several strong-coupling gapped phases have been found. In the Luttinger liquid phase, for the most general spin dependence of the couplings, all 2n2n modes have different velocities if the interband scattering processes are scaled out, while nn doubly degenerate modes appear if the interband scattering processes remain finite. The role of backward-scattering, charge-transfer and umklapp processes has been analysed using their bosonic form and the possible phases are characterized by the number of gapless modes. As a special case the SU(nn) symmetric Hubbard ladder has been investigated numerically. It was found that this model does not scale to the Luttinger liquid fixed point. Even for generic filling gaps open up in the spectrum of the spin or charge modes, and the system is always insulator in the presence of umklapp processes

    Optically switched magnetism in photovoltaic perovskite CH3_3NH3_3(Mn:Pb)I3_3

    Full text link
    The demand for ever-increasing density of information storage and speed of manipulation boosts an intense search for new magnetic materials and novel ways of controlling the magnetic bit. Here, we report the synthesis of a ferromagnetic photovoltaic CH3_3NH3_3(Mn:Pb)I3_3 material in which the photo-excited electrons rapidly melt the local magnetic order through the Ruderman-Kittel-Kasuya-Yosida interactions without heating up the spin system. Our finding offers an alternative, very simple and efficient way of optical spin control, and opens an avenue for applications in low power, light controlling magnetic devices

    Doped carbon nanotubes as a model system of biased graphene

    Full text link
    Albeit difficult to access experimentally, the density of states (DOS) is a key parameter in solid state systems which governs several important phenomena including transport, magnetism, thermal, and thermoelectric properties. We study DOS in an ensemble of potassium intercalated single-wall carbon nanotubes (SWCNT) and show using electron spin resonance spectroscopy that a sizeable number of electron states are present, which gives rise to a Fermi-liquid behavior in this material. A comparison between theoretical and the experimental DOS indicates that it does not display significant correlation effects, even though the pristine nanotube material shows a Luttinger-liquid behavior. We argue that the carbon nanotube ensemble essentially maps out the whole Brillouin zone of graphene thus it acts as a model system of biased graphene

    Insulating charge density wave for a half-filled SU(N) Hubbard model with an attractive on-site interaction in one dimension

    Full text link
    We study a one-dimensional SU(N) Hubbard model with an attractive on-site interaction and N>2N>2 at half-filling on the bipartite lattice using density-matrix renormalization-group method and a perturbation theory. We find that the ground state of the SU(N) Hubbard model is a charge density wave state with two-fold degeneracy. All the excitations are found to be gapful, resulting in an insulating ground state, on contrary to that in the SU(2) case. Moreover, the charge gap is equal to the Cooperon gap, which behaves as 2Nt2/(N1)U-2Nt^2/(N-1)U in the strong coupling regime. However, the spin gap Δs\Delta_{s} and the quasiparticle gap Δ1\Delta_{1} as well open exponentially in the weak coupling region, while in the strong coupling region, they linearly depend on UU such that ΔsU(N1)\Delta_{s}\sim -U(N-1) and Δ1U(N1)/2\Delta_{1}\sim -U(N-1)/2.Comment: 7 pages, 7 figure

    Properties of excitations in systems with a spinor Bose-Einstein condensate

    Full text link
    General theory in case of homogenous Bose-Einstein condensed systems with spinor condensate is presented for the correlation functions of density and spin fluctuations and for the one-particle propagators as well. The random phase approximation is investigated and the damping of the modes is given in the intermediate temperature region. It is shown that the collective and the one-particle excitation spectra do not coincide fully.Comment: 5 pages, 1 figur

    Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator

    Full text link
    We develop a mean-field model describing the Hamiltonian interaction of ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate is properly defined by means of a grand-canonical approach. The model is efficient because only the relevant excitation modes are taken into account. However, the model goes beyond the two-mode subspace necessary to describe the self-organization quantum phase transition observed recently. We calculate all the second-order correlations of the coupled atom field and radiation field hybrid bosonic system, including the entanglement between the two types of fields.Comment: 10 page

    Ultralong 100 ns spin relaxation time in graphite at room temperature

    Get PDF
    Graphite has been intensively studied, yet its electron spins dynamics remains an unresolved problem even 70 years after the first experiments. The central quantities, the longitudinal (T1) and transverse (T2) relaxation times were postulated to be equal, mirroring standard metals, but T1 has never been measured for graphite. Here, based on a detailed band structure calculation including spin-orbit coupling, we predict an unexpected behavior of the relaxation times. We find, based on saturation ESR measurements, that T1 is markedly different from T2. Spins injected with perpendicular polarization with respect to the graphene plane have an extraordinarily long lifetime of 100 ns at room temperature. This is ten times more than in the best graphene samples. The spin diffusion length across graphite planes is thus expected to be ultralong, on the scale of ~ 70 μm, suggesting that thin films of graphite — or multilayer AB graphene stacks — can be excellent platforms for spintronics applications compatible with 2D van der Waals technologies. Finally, we provide a qualitative account of the observed spin relaxation based on the anisotropic spin admixture of the Bloch states in graphite obtained from density functional theory calculation
    corecore