103 research outputs found
Possible phases of two coupled n-component fermionic chains
A two-leg ladder with -component fermionic fields in the chains has been
considered using an analytic renormalization group method. The fixed points and
possible phases have been determined for generic filling as well as for a
half-filled system and for the case when one of the subbands is half filled. A
weak-coupling Luttinger-liquid phase and several strong-coupling gapped phases
have been found. In the Luttinger liquid phase, for the most general spin
dependence of the couplings, all modes have different velocities if the
interband scattering processes are scaled out, while doubly degenerate
modes appear if the interband scattering processes remain finite. The role of
backward-scattering, charge-transfer and umklapp processes has been analysed
using their bosonic form and the possible phases are characterized by the
number of gapless modes. As a special case the SU() symmetric Hubbard ladder
has been investigated numerically. It was found that this model does not scale
to the Luttinger liquid fixed point. Even for generic filling gaps open up in
the spectrum of the spin or charge modes, and the system is always insulator in
the presence of umklapp processes
Optically switched magnetism in photovoltaic perovskite CHNH(Mn:Pb)I
The demand for ever-increasing density of information storage and speed of
manipulation boosts an intense search for new magnetic materials and novel ways
of controlling the magnetic bit. Here, we report the synthesis of a
ferromagnetic photovoltaic CHNH(Mn:Pb)I material in which the
photo-excited electrons rapidly melt the local magnetic order through the
Ruderman-Kittel-Kasuya-Yosida interactions without heating up the spin system.
Our finding offers an alternative, very simple and efficient way of optical
spin control, and opens an avenue for applications in low power, light
controlling magnetic devices
Doped carbon nanotubes as a model system of biased graphene
Albeit difficult to access experimentally, the density of states (DOS) is a
key parameter in solid state systems which governs several important phenomena
including transport, magnetism, thermal, and thermoelectric properties. We
study DOS in an ensemble of potassium intercalated single-wall carbon nanotubes
(SWCNT) and show using electron spin resonance spectroscopy that a sizeable
number of electron states are present, which gives rise to a Fermi-liquid
behavior in this material. A comparison between theoretical and the
experimental DOS indicates that it does not display significant correlation
effects, even though the pristine nanotube material shows a Luttinger-liquid
behavior. We argue that the carbon nanotube ensemble essentially maps out the
whole Brillouin zone of graphene thus it acts as a model system of biased
graphene
Insulating charge density wave for a half-filled SU(N) Hubbard model with an attractive on-site interaction in one dimension
We study a one-dimensional SU(N) Hubbard model with an attractive on-site
interaction and at half-filling on the bipartite lattice using
density-matrix renormalization-group method and a perturbation theory. We find
that the ground state of the SU(N) Hubbard model is a charge density wave state
with two-fold degeneracy. All the excitations are found to be gapful, resulting
in an insulating ground state, on contrary to that in the SU(2) case. Moreover,
the charge gap is equal to the Cooperon gap, which behaves as
in the strong coupling regime. However, the spin gap and the
quasiparticle gap as well open exponentially in the weak coupling
region, while in the strong coupling region, they linearly depend on such
that and .Comment: 7 pages, 7 figure
Properties of excitations in systems with a spinor Bose-Einstein condensate
General theory in case of homogenous Bose-Einstein condensed systems with
spinor condensate is presented for the correlation functions of density and
spin fluctuations and for the one-particle propagators as well. The random
phase approximation is investigated and the damping of the modes is given in
the intermediate temperature region. It is shown that the collective and the
one-particle excitation spectra do not coincide fully.Comment: 5 pages, 1 figur
Multimode mean-field model for the quantum phase transition of a Bose-Einstein condensate in an optical resonator
We develop a mean-field model describing the Hamiltonian interaction of
ultracold atoms and the optical field in a cavity. The Bose-Einstein condensate
is properly defined by means of a grand-canonical approach. The model is
efficient because only the relevant excitation modes are taken into account.
However, the model goes beyond the two-mode subspace necessary to describe the
self-organization quantum phase transition observed recently. We calculate all
the second-order correlations of the coupled atom field and radiation field
hybrid bosonic system, including the entanglement between the two types of
fields.Comment: 10 page
Ultralong 100 ns spin relaxation time in graphite at room temperature
Graphite has been intensively studied, yet its electron spins dynamics remains an unresolved problem even 70 years after the first experiments. The central quantities, the longitudinal (T1) and transverse (T2) relaxation times were postulated to be equal, mirroring standard metals, but T1 has never been measured for graphite. Here, based on a detailed band structure calculation including spin-orbit coupling, we predict an unexpected behavior of the relaxation times. We find, based on saturation ESR measurements, that T1 is markedly different from T2. Spins injected with perpendicular polarization with respect to the graphene plane have an extraordinarily long lifetime of 100 ns at room temperature. This is ten times more than in the best graphene samples. The spin diffusion length across graphite planes is thus expected to be ultralong, on the scale of ~ 70 μm, suggesting that thin films of graphite — or multilayer AB graphene stacks — can be excellent platforms for spintronics applications compatible with 2D van der Waals technologies. Finally, we provide a qualitative account of the observed spin relaxation based on the anisotropic spin admixture of the Bloch states in graphite obtained from density functional theory calculation
- …