35 research outputs found

    Human telomerase activity regulation

    Get PDF
    Telomerase has been recognized as a relevant factor distinguishing cancer cells from normal cells. Thus, it has become a very promising target for anticancer therapy. The cell proliferative potential can be limited by replication end problem, due to telomeres shortening, which is overcome in cancer cells by telomerase activity or by alternative telomeres lengthening (ALT) mechanism. However, this multisubunit enzymatic complex can be regulated at various levels, including expression control but also other factors contributing to the enzyme phosphorylation status, assembling or complex subunits transport. Thus, we show that the telomerase expression targeting cannot be the only possibility to shorten telomeres and induce cell apoptosis. It is important especially since the transcription expression is not always correlated with the enzyme activity which might result in transcription modulation failure or a possibility for the gene therapy to be overcome. This review summarizes the current state of knowledge of numerous telomerase regulation mechanisms that take place after telomerase subunits coding genes transcription. Thus we show the possible mechanisms of telomerase activity regulation which might become attractive anticancer therapy targets

    Medium-size-vessel vasculitis

    Get PDF
    Medium-size-artery vasculitides do occur in childhood and manifest, in the main, as polyarteritis nodosa (PAN), cutaneous PAN and Kawasaki disease. Of these, PAN is the most serious, with high morbidity and not inconsequential mortality rates. New classification criteria for PAN have been validated that will have value in epidemiological studies and clinical trials. Renal involvement is common and recent therapeutic advances may result in improved treatment options. Cutaneous PAN is a milder disease characterised by periodic exacerbations and often associated with streptococcal infection. There is controversy as to whether this is a separate entity or part of the systemic PAN spectrum. Kawasaki disease is an acute self-limiting systemic vasculitis, the second commonest vasculitis in childhood and the commonest cause of childhood-acquired heart disease. Renal manifestations occur and include tubulointerstitial nephritis and renal failure. An infectious trigger and a genetic predisposition seem likely. Intravenous immunoglobulin (IV-Ig) and aspirin are effective therapeutically, but in resistant cases, either steroid or infliximab have a role. Greater understanding of the pathogenetic mechanisms involved in these three types of vasculitis and better long-term follow-up data will lead to improved therapy and prediction of prognosis

    ATMIN defines an NBS1-independent pathway of ATM signalling

    No full text
    The checkpoint kinase ATM (ataxia telangiectasia mutated) transduces genomic stress signals to halt cell cycle progression and promote DNA repair in response to DNA damage. Here, we report the characterisation of an essential cofactor for ATM, ATMIN (ATM INteracting protein). ATMIN interacts with ATM through a C-terminal motif, which is also present in Nijmegen breakage syndrome (NBS)1. ATMIN and ATM colocalised in response to ATM activation by chloroquine and hypotonic stress, but not after induction of double-strand breaks by ionising radiation (IR). ATM/ATMIN complex disruption by IR was attenuated in cells with impaired NBS1 function, suggesting competition of NBS1 and ATMIN for ATM binding. ATMIN protein levels were reduced in ataxia telangiectasia cells and ATM protein levels were low in primary murine fibroblasts lacking ATMIN, indicating reciprocal stabilisation. Whereas phosphorylation of Smc1, Chk2 and p53 was normal after IR in ATMIN-deficient cells, basal ATM activity and ATM activation by hypotonic stress and inhibition of DNA replication was impaired. Thus, ATMIN defines a novel NBS1-independent pathway of ATM signalling
    corecore